nested case-control study was performed to collect individual information concerning classical CSD risk factors (weight, height, smoking status, blood pressure, blood glucose and cholesterol) from medical files for 76 cases of death from CSD (including 26 from IHD and 16 from CVD) and 237 controls, matched for attained age and birth date and counter-matched for cumulative radon exposure.

Results In the whole cohort, a significant association with cumulative radon exposure was observed for CVD mortality, but not for CSD or IHD mortality. In the case-control study, no significant unadjusted Odd-Ratio for cumulative radon exposure was observed for any endpoint. Analyses adjusted on CSD risk factors, for which missing data do not exceed 25%, are ongoing.

Conclusions The issue of CSD associated to ionising radiation is crucial for radiation protection. The present study, allowing to consider individual data on major classical CSD risk factors, will contribute to improve knowledge on the effects of low dose exposure.

Objectives To assess personal exposure to carbon nanotubes for a study of early effect biomarkers among workers exposed to carbon nanotubes (CNTs).

Method Three major job categories were identified in the exposed factory: production, R&D and office. For qualitative assessment personal 8-hr-TWA inhalable dust samples (n = 5) were collected in all job categories and analysed by SEM-EDX. For quantitative assessment 8-hr TWA samples (n = 30) were collected from the production and R&D workers and analysed for elemental carbon, corrected for soot using SEM/EDX. Job activities were recorded during all measurements.

Results The qualitative analyses demonstrated the presence of CNTs in the personal breathing zone of production, R&D and office workers. CNT agglomerates with particle sizes between 500 nm and 100 µm were identified for production and R&D workers and between 500 nm and 5 µm for office workers. No single CNTs were identified. The quantitative analyses demonstrated geometric mean (GM) inhalable CNT levels of 42.6 µg/m³ (min-max: 1.4–1186.5) and 4.6 µg/m³ (min-max: 0.2–59.5) for the production and R&D workers, respectively.

Conclusions We identified exposure to clusters of CNT in production, R&D and office workers of the CNT production facility. As expected GM exposure was higher for production than for R&D workers, however considerable variability was observed. Additional quantitative measurements in office and production workers are ongoing. For the full set, analyses of within- and between-worker variability and activity as a determinant will be performed. This information will be used to assess personal exposure in a cross-sectional study of early health effects in the CANTES study.