lower, current JP8 exposure. Significant associations were not observed between repeated-workday exposure to JP8 and neuropsychological performances.

Conclusions Results suggest that repeated JP8 exposure, at levels not exceeding regulatory limits, does not significantly contribute to reduced neuropsychological proficiencies. We discuss potential explanations and implications for these findings.

Objectives To identify modifiable factors associated with sensitisation to laboratory animals.

Method Animal husbandry staff (group 1) and researchers (group 2) were recruited from a University animal facility together with research health workers not working with animals (group 3). Sensitisation was evaluated using skin prick tests to rat and mouse allergens. Current tasks, job history and demographic information were recorded.

Results The 3 groups comprised: 57; 57; and 50 subjects. Among group 1, 88% were currently working with rats, and 88% with mice: 51% were sensitised to rat, 28% to mouse. In group 2 the numbers exposed were lower (75% rat, 58% mice) as was the rate of sensitisation (32% rat, 12% mouse). No one in group 3 was exposed or sensitised. Among those currently exposed, sensitisation to rat was associated with shaving of fur and disposal of soiled litter, and with less frequent use of female rats. Sensitisation to mice was higher in those with contact with mouse urine and saliva, but not related to specific tasks. In multiple regression models, sensitisation to rat was only associated with use of female rats (OR 0.25, 95% CI 0.01–0.64). Sensitisation to mouse was greater in women (OR 6.67, 1.20–36.98), those born on a farm (OR 4.65, 1.05–20.53) and with exposure to mouse saliva (OR 4.26, 1.23–14.76).

Conclusions Exposures were highly correlated, making it difficult to identify specific modifiable risk factors. However it is of note that, since male rats use urine to mark territory, the greater use of exclusively female rats should serve to reduce sensitisation.

Objectives To investigate the importance of multi-site musculoskeletal pain as a predictor of sickness absence days due to musculoskeletal disorders (MSD) among blue-collar employees, and to study what extent such a relationship might be confounded by physical loading at work.

Method Survey responses from 901 employees were linked to a food industry company’s record of sickness absence due to MSD (≥ four days). Generalised Linear Models (GLM) with negative binomial distribution assumption was used in order to determine associations between the occurrence of multi-site pain (no pain, one-site and multi-site pain), individual variables, work related variables and sickness absence days due to MSD during a four-year follow-up.

Results The high exposure group had about 92 and the low exposure about 72 all-cause sickness absence days yearly, and corresponding figures for absence due to MSD were 36 and 28. The share of MSD absence is about 40% irrespective of the exposure. Single site pain did not predict absence, whereas multi-site pain turned out as an independent predictor. Multi-site pain predicts absence in the group with low biomechanical exposure, but not in the group with high exposure. The p-values for interaction show that the groups differ significantly both in case of repetitive movements and in case of awkward postures.

Conclusions This prospective cohort study revealed very high level of sickness absence in biomechanically strenuous work, represented by manual work in food industry. On average, the employees were absent over 80 calendar days, i.e. almost three months, yearly.