Abstracts

Objectives 1

1 Results suggested excess risk associated with exposure to benzo(a)pyrene and to PAHs arising from cooking fumes, plastic, and rubber; but not for PAH exposures derived from wood, coal, and petroleum combustion products. These results are partly in line with previous reports of highly exposed workers, though exposure levels would not have been as high in our population-based study.

106 CANCER INCIDENCE AND MORTALITY IN AGRICULTURAL COHORTS IN THE AGRICOH CONSORTIUM

R E Denholm, Beane Freeman, 1Sävén, 2Maëlan, 3MacFarlane, 4Sim, 5Lubbe, 6Bald, 7Kjaerheim, 8Langseth, 9Park, 10Koofer, 11Waring, 12Ferro, 13Douwes, 14Hoppin, 15Kromhout, 16Schenker, 17Leon.

Monash University, Victoria, Australia; 2National Cancer Institute, Bethesda, Maryland, United States of America; 3National Cancer Institute, Bordeaux, France; 4National Cancer Registry of Norway, Oslo, Norway; 5National Institute of Occupational Health, Oslo, Norway; 6The Cancer Registry of Norway, Oslo, Norway; 7National Cancer Institute, Lyons, France; 8Korean Multi-Center Cancer Registry, Korea; 9National Cancer Institute, Bethesda, Maryland, USA; 10National Cancer Institute, Bordeaux, France; 11Massey University, Wellington, New Zealand; 12National Institute of Environmental Health Sciences, North Carolina, United States of America; 13University of California at Davis, California, United States of America

Objective 2

The CC has higher measured noise levels than F. Noise levels in cabins range from 68.5 dB (A) to 85.3 dB (A) in CC and from 42.1 dB (A) to 80 dB (A) in F. Preliminary results show a higher prevalence of NIHL among personnel in CC (Pearson Chi-Square test, P = 0.053). Mean age for CC was 32 and for F 28 years. When adjusting for age using logistic regression no differences in NHIL among the two vessel groups were found.

Conclusions 3

Comparing and contrasting patterns of cancer incidence and mortality in studies from around the world with different agricultural practices and populations will generate hypotheses for future data-pooling projects. In particular, the study will identify cancers of high priority in agricultural workers and provide hypotheses on potential causes for differences in rates between populations, or on common exposures that might contribute to similarities.

Session: N. Noise & hearing

107 NOISE EXPOSURE AND HEARING LOSS AMONG NAVAL PERSONNEL


Objectives 4

In a questionnaire conducted by The Royal Norwegian Navy in 2002/2003, 38% of the personnel reported to be much/very much exposed to noise and 24% reported reduced hearing. Based on these findings, further investigation on the working conditions on board naval vessels and mapping NIHL among the personnel on board was initiated. A part of this study is to compare noise levels and occurrence of hearing loss on large vessels like frigates and smaller vessels like coastal corvettes.

Methods 5

Noise levels in areas were measured on three coastal corvettes (CC) and three frigates (F) using Brüel & Kjær Hand-held Analyzer Type 2250. All personnel working on frigates and coastal corvettes were invited to audiometric testing, using Interacoustics AD226. NIHL was classified as ≥ 25 dB in at least one ear at 3000, 4000 or 6000 Hz. They completed a questionnaire concerning noise exposure and background information.

Preliminary Results 6

Noise levels in cabins range from 68.5 dB (A) to 85.3 dB (A) in CC and from 42.1 dB (A) to 80 dB (A) in F. 157 persons were currently or previously working on F and 91 persons were currently or previously working on CC. The prevalence of NIHL among personnel in CC was 40.7% and 28.7% among personnel in F (Pearson Chi-Square test, P = 0.053).

Mean age for CC was 32 and for F 28 years. When adjusting for age using logistic regression no differences in NIHL among the two vessel groups were found.

Conclusions 7

The CC has higher measured noise levels than the F. Our analysis shows a higher prevalence of NIHL among personnel currently or previously working on CC compared to F. When adjusting for age the effect disappears. This may indicate that the NIHL found was not related to vessel group.

108 HEARING SURVEILLANCE IN THAI FORKLIFT DRIVERS WITH ENVIRONMENTAL MEASUREMENT

W K Kanjanakantorn. Bangkok Hospital Group, Bangkok, Thailand

Background 8

Noise is one of physical hazards found in forklift drivers, especially with diesel engine. Thailand’s 2010 regulation on the control of noise at work is not more than 85 dBA per 8 hour-TWA.
Objective To survey the hearing problem and noise exposure of forklift drivers in a factory.

Methods A cross-sectional survey was conducted during 2011–2012 among the workers. Data was collected through periodic examination and environmental measurement. A total of 21 people participated in the study (20 males, 1 female).

Results The workers were 29–48 years of age and their working years were between 9 to 20 years with the average working time of 40 hours per week. The report of abnormal audiogram was 33.3% (7 people) and one case was later excluded after the repeated test was normal. Two cases were diagnosed with moderate to severe sensorineural hearing loss while the others (5 people) were diagnosed with mild SNHL. All of them were not concerned about ear protective equipment, nor did they utilize such equipment. The environmental measurement was done by sound level meter; Noise Dosimeter. Time weighted average level (8-hr-TWA) was still under the regulations, which were between 80.38 to 85.61dBA.

Conclusion Hearing conservative program should be provided to high risk workers even though the noise induced hearing loss was not diagnosed. The periodic examination is important to compare with baseline audiogram.


Background This study provides an epidemiological profile of hearing loss cases reported to the Norwegian Labour Inspectorate (NLI) and also a distribution of cases by the notifying physician.

Materials and Methods The study is based on obligatory physician notifications of work-related illnesses to the Norwegian Labour Inspectorate. These physician reports are the basis for the Registry of Work-related illnesses. We extracted NIHL data from this registry based on the ICD-10 codes for the period 2005–2009 (5-year period). We also obtained employment data from Statistics Norway by trade sector, gender and age. We then estimated the average number of cases reported in the period 2005–2009. Next we estimated the incidence rates for the reported cases by gender, age and trade sector. We also computed descriptive statistics for occupation and the type of notifying physician.

Results In the 5-year period, a total of 7888 cases of NIHL were reported to the NLI. On average 1577 cases of NIHL were reported. 96% of these cases were men. Incidence of reported work-related NIHL was estimated to be 66/100000 workers. The incidence for reported NIHL cases was respectively 6 and 120/100000 workers for women and men.

The highest incidence was found in age group 55–66. Cases reported from manufacturing, electricity, gas, steam, construction and mining sectors were found to have the highest incidence rates.

Occupational health physicians reported 85% of all the NIHL cases while hospital and general physicians reported 7% and 4% of the cases respectively.

Conclusions Work-related NIHL remains an extensive problem, yet an under-profiled problem in Norway. Targeted interventions toward vulnerable groups to reduce noise exposure to vulnerable groups are necessary.

The registry of work-related illnesses is not ideal in detecting cases of NIHL because of extensive underreporting and remedial measures ought to be taken to address this issue.

110 EFFECTS OF WHOLE BODY VIBRATION ON HEARING LEVEL SHIFTS

Background and Aim Adverse effects of occupational whole body vibration (WBV) on hearing are yet unknown. The aim of the research was to survey effects of whole body vibration on hearing shifts.

Methods Male adult New Zealand White rabbits were divided into two groups include control group (n = 6, not exposed to whole body vibration) and vibration group (n = 6, exposed to whole body vibration in the Z-axis at 4 Hz and 1.0 ms⁻² r.m.s for 8 hours per day in 5 consecutive days by putting their box on a vibrating platform). DPOAEs were measured hearing shifts in vibration group in days: zero (before exposure to vibration) as baseline, eighth (an hour after exposure to vibration) as temporary threshold shifts, and tenth (48 hours after exposure to vibration) as permanent threshold shifts. Similarly, DPOAEs were also examined hearing shifts in control group in days zero, eighth, tenth. The gathered data analysed by independent-samples T Test.

Results Increased mean DPOAEs amplitudes were observed in frequencies 375.00, 562.50, 750.00, 1125.00, 1312.50, 2062.50, 2625.00, 3937.50, 5437.50, 6562.50 Hz respectively in vibration group. There were no any significant differences between mean DPOAEs amplitudes in days zero, eighth and tenth at all frequencies (p = 0.073).

Conclusion The exposure to vibration significantly led to enhanced mean DPOAEs amplitudes at all frequencies at low frequencies rather than at high frequencies. Thus, this study showed that vibration exposure only could not cause temporary or permanent threshold shifts. Increased DPOAEs amplitudes could be probably attributed to normal outer and destroyed inner hair cells.

Session: O. Biomarker

111 PRODUCTION OF IL-10, TNF AND IL-12 BY PERIPHERAL BLOOD MONONUCLEAR CELLS IN MEXICAN WORKERS EXPOSED TO A MIXTURE OF BENZENE-TOLUENE-XYLENE

L H Hane-García, ¹ C A J P. Juárez-Pérez, ² G A M. Aguilar-Madrid, ³ N V Z Vélez-Zamora, ⁴ M Muñoz-Navarro, ⁵ R C H S. Chacón-Salinas, ⁶ C R G B. González-Bonilla, ⁷ C R I H. Iturbe-Haro, ⁸ E G. Estrada-García, ⁹ H Borja-Aburto. Universidad Autónoma de la Ciudad de México, Delegación Cuauhtémoc, Cd. de México, México; ¹ Instituto Mexicano del Seguro Social, México City, Mexico; ² Universidad de la Frontera, Temuco, Chile; ³ Instituto Politécnico Nacional, Mexico City, Mexico