Abstracts

personal exposure and hygienic characteristics of working conditions correctly.

4 NIGHT SHIFT WORK AND EXPOSURE TO HAZARDOUS AGENTS PRESENT AT THE WORK ENVIRONMENT IN LODZ, POLAND

B P Peplonska, Burdelak, Bukowska, Kryśicka, Konieczko. Nufer Institute of Occupational Medicine, Lodz, Poland

10.1136/oemed-2013-101717.4

Objectives In 2007, shift work involving circadian disruption was classified as probably carcinogenic to humans (Group 2A) by the International Agency for Research on Cancer. In most instances, the exposure in the occupational settings is complex and rarely only one hazardous occupational factor is present. Little is known so far about industrial exposures occurring in the manufacturing plants where night shift work system operates.

Methods We collected data on the night shift work systems and hazardous agents present in 44 enterprises, based on a short survey filled in by the inspectors of safety and hygiene employed at the manufacturing plants. All identified hazardous factors were classified according to the IARC list of carcinogens and the European classification of carcinogens.

Results The most common system of work employs 3 (8-hour) shifts within a 5-day cycle. Altogether, as many as 153 occupational exposures occurring in the environment of the plants were identified, with noise, carbon oxide, and formaldehyde recorded among the most common exposures. Night shift work was not noted as the sole hazardous occupational factor present at the working environment in the plants. We identified 20 factors that have been evaluated by IARC, 11 of them classified to Group 1 - carcinogenic to humans. 10 factors have been classified as carcinogens according to the regulation of the European classification of carcinogens.

Conclusions Our study shows that in most instances, real life exposure circumstances at work places are complex and involve a variety of factors that may affect human response to night shift work involving circadian rhythm disruption.

The project is funded from a grant of the Polish National Research Fund, Grant No: PB5169/B/P01/2010/38.

5 DESCRIPTIVE ANALYSIS OF THE FRENCH OCCUPATIONAL EXPOSURE DATABANKS COLCHIC AND SCOLA

G M Mater, Jeandel, Clerc, Wild, Lavoué, Wilschut. Vandoeuvre les Nancy, France; 2Occupational Diseases Department - University Hospital of Nancy, Nancy, France; 3Department of Environmental and Occupational Health, University of Montreal, Montreal, Canada

10.1136/oemed-2013-101717.5

Objectives Knowledge of historical exposures conditions in the workplace plays an important role in occupational health. Several countries have built databases of occupational hygiene measurements from prevention or compliance activities conducted over the years. The aim of this work was to describe the contents of two French databanks, COLCHIC and SCOLA, started respectively in 1987 and 2007.

Methods COLCHIC data results from prevention activities conducted by hygienists from laboratories related to governmental occupational health insurance. Its initial aims included, among others, support for epidemiological studies and implementation of prevention policies. On the other hand, SCOLA was created to store data collected in the context of mandatory verification of compliance to legal occupational exposure limits in France. Despite different objectives, COLCHIC and SCOLA share the same structure. Ancillary information includes industry, occupation, task, local and general ventilation, as well as representativeness and sampling strategies. Extracts from these two databases were obtained for the period until November 2012.

Results COLCHIC and SCOLA contain respectively 830 000 and 119 000 records. Data in COLCHIC cover 40 substances with more 4 000 measurements, 48 607 sampling visits in 24 520 factories. Data in SCOLA include 11 substances with more 1 000 measurements, 33 075 sampling visits in 4384 factories. The 5 most frequent substances in COLCHIC are respirable dust (62876), toluene (31766), acetone (28763), lead (24614), xylene (21768). The 5 most frequent substances in SCOLA are asbestos (63886), wood dust (12625), crystalline silica (4353), lead (3135) and toluene (2505). The main industrial activities in both databanks are manufacturing, construction, and waste management and remediation.

Conclusions COLCHIC and SCOLA both represent important sources of information on occupational exposures. However they do not result from probabilistic sampling and their representativeness of historical exposure in France is unknown.

6 SIGNIFICANCE OF OCTANOL-WATER PARTITION COEFFICIENT AND MOLECULAR WEIGHT AS MOLECULAR DESCRIPTORS IN PREDICTING SKIN PERMEABILITY OF CHEMICAL SUBSTANCES

C Chang, Chen. 1China Medical University, Taichung, Taiwan; 2National Kaohsiung First University of Science and Technology, Kaohsiung City, Taiwan

10.1136/oemed-2013-101717.6

Objectives The occupational hazard of chemical absorption via dermal route was frequently assessed by evaluating the skin permeability (Kp) of chemical. In addition to in vitro testing using human skin, the quantitative structure-activity relationship (Q SAR) has been used as an alternative source to providing Kp. In the early Kp QSARs the octanol-water partition coefficient (log K OW) and molecular weight (MW) were commonly applied as dominant properties to describe transdermal transport of chemical. This study examined the efficacy of log K OW/MW-based QSARs in Kp prediction.

Methods One hundred and fifty-eight chemicals of known Kp determined in vitro using human skin were used to evaluate the goodness of fit (R²) of the model estimates approximating the measured Kp for six log K OW/MW-based Kp QSARs reported in Wilschut et al. (1995) and Mitragotri (2002). A new Kp QSAR consisting of additional descriptors for the same compounds was developed by identification of key descriptors from a pool of 3,224 descriptors supported by Dragon® followed by stepwise regression.

Results For the log K OW/MW-based Kp QSARs, the regression of model estimates against experimentally determined Kp yields a regression line with a slope of 0.314 to 0.744, with the lowest value observed for the model employing log K OW alone. In the new QSAR, in addition to log K OW the electrostatic distribution in the molecular space appeared to be a significant factor affecting Kp, while the MW exerted its influence as a sub-domain, thus under constraints, of antineoplastic properties.

Conclusions As the Kp QSAR continues to evolve, attention may be required of on interpreting the limitations of MW as a
Kp descriptor. Four of the investigated Kp QSARs show a R^2 close to 0.7 or higher when predicting Kp, suggesting a consistent performance of these models to serve as a tool of dermal hazard characterisation.

Objectives

Polycyclic aromatic hydrocarbons (PAHs) are a group of chemicals consisting primarily of fused aromatic rings. As environmental pollutants, PAHs are of concern because some variants are carcinogenic. Our objective is to predict probabilities of PAH exposure based on industry to allow assessment of individual PAH exposure through occupational history.

Methods

The Occupational Safety and Health Administration (OSHA) provided access to two PAH exposure databanks of U.S. workplace compliance testing compiled between 1979 and 2010. Multivariable logistic mixed-effects models were used to predict, for each industry, the probability of a PAH measurement exceeding OSHA's permissible exposure level (exceedance fraction, PEL = 0.200 mg/m^3). Time, databank, and industry were included as fixed-effects while inspection number, i.e. an identifier for the compliance inspector, was included as a random-effect. Industry codes, represented by Standard Industrial Classification or North American Industry Classification System, were maintained or collapsed based on the number of measurements per cell to ensure sufficient sample size.

Results

Databank records were amalgamated to yield 2,509 day-specific personal measurements representing 756 companies across 45 states. Regardless of industry code used, analysis revealed that for 1980 less than 5% of industry codes had an exceedance fraction (EF) greater than 0.8. The remaining industry codes were equally distributed between an EF range of 0.2–0.8 and an EF less than 0.2. Overall, more than 80% of industry codes had an EF less than 0.5, databank indicator was marginally significant (p < 0.10), and there was an inverse temporal trend of exceeding the PEL, with lower risk in most recent years (albeit not statistically significant).

Conclusions

These statistical models allow identification of industries with different risks of elevated PAH exposure. However, because exposure may not be homogeneous within industry codes, future work will involve incorporating information on jobs/occupations with industries to more accurately identify PAH exposure.

Abstracts

Session: B. Other

BLOOD LEAD DETERMINANTS AND PREVALENCE OF NEUROPSYCHIATRIC SYMPTOMS IN FIREARM USERS

C A J P Juarez Perez, T C Tellez-Cordero, C H G Haro-Garcia, A M G Mercado-Garcia, A M A M Aguilar-Madrid, G S Social Security Institute, Distrito Federal, Mexico; Médica del Trabajo, Distrito Federal, Mexico; University of Mexico City, Distrito Federal, Mexico; Instituto Nacional De Salud Publica, Cuernavaca, Morelos, Mexico

Background

Blood lead continues to be a health risk for Mexican workers.

Objective

To identify blood lead predictors and the prevalence of neuropsychiatric symptoms in firearm users.

Material and Methods

A cross-sectional study was performed on 65 males. We obtained socio-occupational and determined venous blood lead (BbP), as well as neuropsychiatric symptoms using the Q-16 questionnaire.

Results

The mean (SD) [min-max] age was 34.8 (6.9) [21–60] years; mean number of years working at the company was 14 (8.5) [1–48] years. Twenty percent (13) used leaded glazed clay pottery (PbGC) in the kitchen. During practice they fired a mean 72 shots (60) [20–250], and during their employed life 5483 (8322.5) [200 to 50 000]. Mean BbP was 6.4 (2.8) [2.7–14.4] mcg/dL. Two caretakers at the firing range had 29.6 and 54.8 mcg/dL.