use and some pollution sources have been noticed during the environmental investigations, although no emanation at a toxic level was detected. The psychosocial investigations emphasised a real suffering of the agents and a communication problem towards the events. The results allowed us to make some recommendations which are currently being applied. Since the beginning of their application, no more complaints have been reported.

Methods

Children were screened for blood lead level on a voluntary basis. Individual and family data on potential lead exposure were collected using a questionnaire and analysed using SAS®9.1. Risk factors for lead contamination were identified using univariate logistic regression.

Results

Overall, 87 children from 0 to 18 years (40 boys and 47 girls) with at least one parent occupationally exposed to lead, were screened (participation rate was 31.5%). Arithmetic and geometric means of blood lead levels were respectively 34.2 mg/L and 26.9 mg/L. The prevalence of contamination (between 50 and 99 μg/L) was 17.2% and that of intoxication (≥100 μg/L) is 1.15%. Risk factors for contamination were age under 6 (RR = 2.19; p = 0.09) and living in a home built before 1948 (RR = 3.96; p = 0.02). Children under 6 had a blood lead level average of 46.9 mg/L, significantly higher than that of children aged 6-12 and 12-18 (respectively 32.4 and 25.1 mg/L). A significant correlation was observed between blood lead level of employee’s children of two factories in the Centre Region (France) and their subcontractors.

Conclusion

The geometric mean of blood lead levels (26.9) in these children with occupationally exposed parents was nearly twice higher than that observed in the Centre region (14.7 mg/L). This confirms existence of exposure to lead in these children of workers in factories using lead programms since that time. As such, a review of recent publications was undertaken to identify if the employment experience has altered in the past 12 years.

Results

10 papers were from the USA and 14 were from other countries. The number of cases followed up ranged from 8 to 471 (total 3,222) with a mean age of 51.9 years. The follow-up period ranged from 2 to 20 years (mean 6.1 years). 10 studies included pre and post-transplant employment rates. Pre-transplant rates ranged from 40-75% (mean 63.8%). Post-transplant the rates ranged from 22-57% (mean 37.1%). In 9 studies the employment rate fell. Post-transplant employment rates fell with duration of follow-up (7 studies; p = 0.016). Cross-sectional analysis showed recipients had lower physical component scores on SF-36 compared to the general population. Longitudinal data showed improvement in physical function between pre- and post-transplant assessment. The results were lower than the general population but better than those with chronic liver disease. One paper identified depression as a factor associated with higher unemployment post-transplant.

Conclusions

The review indicates that post transplantation employment rates are lower compared to pre-transplantation rates, despite improved physical function. Rates appear to fall with duration of follow-up over the first 6.5 years after transplantation. A study with follow-up at intervals after transplantation would improve understanding of the return to work issues and help plan suitable interventions.

Session: E. Sustainable employability

What Effect Does Liver Transplant in Adults Have on Employment? - A Systematic Review

R Wadawski, R Moore. 1University of Alberta, Edmonton, Canada; 2Health Service Executive Dublin North East, Dublin, Ireland

Objectives

Return to work after liver transplantation was last reviewed in 2000. Changes have occurred to transplant