Abstracts

MS SYNERGY collaboration – occupational factors in lung cancer

LUNG CANCER RISK AMONG MEN BY OCCUPATION AND INDUSTRY IN SYNERGY – POOLED ANALYSIS OF CASE-CONTROL STUDIES ON THE JOINT EFFECTS OF OCCUPATIONAL CARCINOGENS IN THE DEVELOPMENT OF LUNG CANCER

Dario Mirabelli,1 Franco Merletti,1 Lorenzo Richiardi,1 Marine Corbin,1 Iván Marín Franch,1 Ann Olsson,2 Per Gustavsson,1 Hans Kromhout,3 Susan Peters,4 Roel Vermeulen,5 Irene Brüske,6 Beate Pesch,7 Thomas Brüning,8 Isabelle Gross,6 Jack Siemiatycki,7 Javier Pintos,7 Heinz-Erich Wichmann,9 Dario Consonni,10 Nils Plåt,9 Wolfgang Ahrens,9 Hermann Pohlab,9 Jolanta Lissowska,10 Neolina Szieszniadabrowska,11 Adrian Cassidy,12 David Zardide,13 Isabelle Stücker,14 Simone Benhamou,15 Vladimir Bencko,16 Lenka Forétová,17 Vladimir Janout,18 Peter Rudnai,19 Eleonora Fabianova,20 Dana Mates,21 Bas Bueno-de-Mesquita,22 Paolo Boffetta,23 Kurt Straif12 University of Turin, Turin, Italy; 2IARC, Lyon, France; 3Karolinska Institutet, Stockholm, Sweden; 4Utrecht University, Utrecht, The Netherlands; 5Institute for Epidemiology, Neuherberg, Germany; 6Institute for Prevention and Occupational Medicine, Bochum, Germany; 7University of Montreal, Montreal, Canada; 8Fondazione IRCCS Ospedale Maggiore Policlinico, Milan, Italy; 9Bremen Institute for Prevention Research and Social Medicine, Bremen, Germany; 10M Skłodowska-Curie Cancer Center and Institute of Oncology, Warsaw, Poland; 11Ifoer Institute of Occupational Medicine, Lodz, Poland; 12University of Liverpool, Liverpool, UK; 13Russian Cancer Research Centre, Moscow, Russia; 14INSERM U 754 - IFREMER, Villefranche, France; 15INSERM U 946, Paris, France; 16Charles University, Prague, Czech Republic; 17Masaryk Memorial Cancer Institute, Brno, Czech Republic; 18Palacky University, Olomouc, Czech Republic; 19National Institute of Environment Health, Budapest, Hungary; 20Regional Authority of Public Health, Banska Bystrica, Slovakia; 21Institut of Public Health, Bucharest, Romania; 22National Institute for Public Health and Environmental Protection, Bilthoven, The Netherlands; 23Mount Sinai School of Medicine, New York, USA

10.1136/oemed-2011-100382.149

Objectives Exploratory analyses by occupation or industry are commonly conducted in case-control studies. However, cancer risks limited to certain jobs within an industry, or to a job within a given industry, become undetectable in the overall industry or job odds-ratio. Using the SYNERGY dataset we conducted an analysis based on occupations and industries combined.

Methods Data included 10,917 male cases and 13,154 male controls. Industries and jobs were coded according to ISIC Revision 2 and ISCO 1968, respectively. Odds-ratios were computed for ISCO-ISIC combinations with ≥10 study subjects, adjusting for study, age, and smoking. To allow for multiple comparisons we applied a semi-Bayes approach, shrinking towards a group mean the estimate for each ISCO-ISIC combination, previously classified as: occupation known or suspected to entail lung cancer risk, other manual workers, other non-manual workers.

Results Out of 1187 evaluated ISCO-ISIC combinations, 50 had an increased odds-ratio (p<0.05). For 26 combinations the risk remained elevated after semi-Bayes shrinkage. As an example, painters in car repair, but not in other industries like car building, had an increased risk (odds-ratio after shrinkage: 1.79, 95% CI 1.04 to 3.07). Likewise, only 3 jobs had increased risk among 63 analysed within the construction industry: miners (2.05, 1.10 to 3.55), bricklayers (1.57, 1.37 to 1.80), welders (1.57, 1.08 to 2.28), earth-moving operators (1.36, 1.05 to 1.76), carpenters (1.30, 1.08 to 1.57), other workers (1.24, 1.06 to 1.44), plumbers (1.23, 1.02 to 1.49) and labourers (1.20, 1.05 to 1.36).

Conclusions The use of ISCO-SIC combinations and a semi-Bayes approach identified specific jobs within specific industries with an increased lung cancer risk.