Competing interests None.

Patient consent Obtained.

Provenance and peer review Not commissioned; not externally peer reviewed.

Accepted 12 May 2010
Published Online First 24 September 2010

doi:10.1136/oem.2010.058008

REFERENCES

High carbon dioxide concentrations in the classroom: the need for research on the effects of children’s exposure to poor indoor air quality at school

Air quality and its effect on health have received recent attention from the House of Commons Environmental Audit Committee.1 While outdoor air pollution is clearly important and contributes to indoor air quality, indoor air pollution sources and the time spent in indoor environments are key to understanding exposure. Children in the UK spend an average of 6–7 h a day inside the school classroom during most weekdays, yet there is very little data on air quality within these environments in the UK. The Health Effects of the School Environment study found poor ventilation, high presence of particulate matter, moulds and allergens to be associated with an increase in respiratory diseases in schoolchildren throughout Europe.2 Carbon dioxide (CO2) concentrations are a good marker of ventilation, with a recommended limit of 1500 ppm averaged over the school day.3 Increased CO2 concentrations will generally indicate raised concentrations of a range of other air pollutants such as volatile organic compounds, fine particulate matter and biological contaminants. We report here on a small study of CO2 concentrations in six schools in Aberdeen city measured in spring 2009.

We used a Tclado 7001Di instrument (Telaire, Goleta, California) to measure and log temperature, relative humidity and CO2 continually over a 7-day period in a total of 11 classrooms. Averaged over the 11 classrooms, the measuring device logged concentrations greater than 1500 ppm for approximately 31% of the school week. In one classroom, a total of 72% of time exceeded 1500 ppm.

We note two recent studies from the USA that have suggested a relationship between raised CO2 concentrations in schools and poorer pupil academic attainment and poorer pupil attendance at school.4,5 In summary, our small study suggests that CO2 concentrations in UK schools may exceed the guidance limits for a substantial proportion of the time children spend in class. Poor ventilation may lead to exposure to elevated concentrations of other air pollutants. Future studies should be designed to assess the potential for indoor air quality in the classroom to influence student health and learning performance.

Janice Miller1, Sean Semple1,2, Stephen Turner2

1 Scottish Centre for Indoor Air, Population Health Sciences, Institute of Applied Health Sciences, School of Medicine, University of Aberdeen, Aberdeen, UK.
2 Institute of Occupational Medicine, Edinburgh, UK.
3 Child Health, Institute of Applied Health Sciences, School of Medicine, University of Aberdeen, Aberdeen, UK.

Correspondence to Dr Sean Semple, Scottish Centre for Indoor Air, Population Health, Room 1.069 Polworth Building, University of Aberdeen, Foresterhill Road, Aberdeen AB25 2ZP, UK; sean.semple@abdn.ac.uk

Competing interests None.

Contributors JM collected the data. SS and ST were involved in the development of the project protocol. All were involved in drafting the letter.

Provenance and peer review Not commissioned; not externally peer reviewed.

Accepted 26 April 2010
doi:10.1136/oem.2010.057471

REFERENCES

CORRECTIONS

doi:10.1136/oem.2008.044727cor1

Mattioli S, Zanardi F, Baldasseroni A, et al. Search strings for the study of putative occupational determinants of disease. Occup Environ Med 2010;67:436–43. The figures in this article were inverted. The proportional Venn diagram should have been Figure 1 and the bar chart should have been Figure 2. The legends were correct.

doi:10.1136/oem.2008.051741cor1

Pattenden S, Armstrong B, Milojicic A, et al. Ozone, heat and mortality: acute effects in 15 British conurbations. Occup Environ Med 2010;67:699–707. In Figure 1B, the scale on the y axis was incorrect. The scale should have read 0.80, 0.90, 1.00, 1.10, 1.20.