Monitoring of fluoro-edenite fibre pollution through the study of sheep lymph nodes as a model of a biological indicator

A significantly increased standardised rate of mortality from pleural mesothelioma, comparable to that reported in asbestos exposed cohorts, has been recorded in Biancavilla (SW slope of Mt Etna, Sicily) and attributed to exposure to fluoro-edenite, a fibrous amphibole found in the inert material extracted from a nearby stone quarry.

It is well known that sheep lung is anatomically and physiologically comparable to human lung, and lymph nodes are considered better indicators of previous asbestos exposure than lung parenchyma.

We therefore measured the concentration of fluoro-edenite fibres in the lymph nodes (tracheobronchial and one middle mediastinal node) draining the lung lobes of sheep habitually grazing 3 km from the town using histology (haematoxylin-eosin and Perls method), light (LM) and scanning electron microscopy (SEM), as well as an energy dispersion spectrometry x ray analysis apparatus in order to assess the pollution due to airborne dust material.

Sixty healthy sheep randomly selected from six flocks (10/flock) and 10 control sheep were sacrificed.

Histology showed hyperplasia of lymphoid follicles, which had large reactive cores. Numerous paracortical macrophages noted among clusters of lymphoid elements contained grey-brownish amorphous particulate with elements with a fibril structure.

SEM analysis of digested nodes evidenced some naked fibres with the crystallochemical features of fluoro-edenite.

Fibre length (range 8–41 μm) and diameter (range 0.4–1.39 μm) were similar to those described in the lung of a Biancavilla housewife who died from pleural mesothelioma.

Fibres were found in all exposed animals, but never in control nodes. The mean number of fibres (0.08 ± 0.04 × 10^6 fibres/g dry tissue) did not differ significantly among exposed animals.

Results are preliminary and document the risk of inhalation of fluoro-edenite fibres a few kilometres from the town. Similar data have been reported by DeNardo and coworkers, who however studied solely lung tissue from sheep with a shorter (roughly half) time of exposure which had been grazing in a limited area around the town.

Data show that sheep can be effective biological indicators of this type of pollution; assessment of fluoro-edenite fibres in lymph nodes therefore appears to be a helpful tool to conduct its environmental monitoring.

V Rapisarda
Department of Social and Environmental Medicine, Occupational Medicine Section, University of Messina, Italy

G Rapisarda, G D Vico
Department of Veterinary Public Health, Pathology Section, University of Messina, Italy

L Gobbi
Department of Material Physics and Engineering, University of Ancona, Italy

C Loreto
Department of Anatomy, Diagnostic Pathology, Forensic Medicine, Hygiene and Public Health, University of Catania, Italy

M Valentino
Department of Molecular Pathology, Occupational Medicine Section, Polytechnic University of Marche, Ancona, Italy

Correspondence to: Prof. M Valentino, Department of Molecular Pathology, Occupational Medicine Section, Polytechnic University of Marche, Ancona, Via Tronto 10/a 60020 Torrette, Ancona, Italy; m.valentino@univpm.it
doi: 10.1136/oem.2005.020727

Competing interests: none declared

References


