Haloacetic acids in drinking water and risk for stillbirth

W D King, L Dodds, A C Allen, B A Armson, D Fell, C Nimrod

Background: Trihalomethanes (THMs) occurring in public drinking water sources have been investigated in several epidemiological studies of fetal death and results support a modest association. Other classes of disinfection by-products found in drinking water have not been investigated.

Aims: To investigate the effects of haloacetic acid (HAA) compounds in drinking water on stillbirth risk.

Methods: A population based case-control study was conducted in Nova Scotia and Eastern Ontario, Canada. Estimates of daily exposure to total and specific HAAs were based on household water samples and questionnaire information on water consumption at home and work.

Results: The analysis included 112 stillbirth cases and 398 live birth controls. In analysis without adjustment for total THM exposure, a relative risk greater than 2 was observed for an intermediate exposure category for total HAA and dichloroacetic acid measures. After adjustment for total THM exposure, the risk estimates for intermediate exposure categories were diminished, the relative risk associated with the highest category was in the direction of a protective effect, and all confidence intervals included the null value.

Conclusions: No association was observed between HAA exposures and stillbirth risk after controlling for THM exposures.

METHODS

Study subjects and data collection

A detailed description of subject accrual and exposure assessment has been previously published. Stillbirths and a random sample of live births occurring in Nova Scotia and Eastern Ontario, Canada, between 1999 and 2001 were identified through population based perinatal databases. Cases were women who had stillborn infants, defined as death of a fetus weighing 500 grams or more at delivery. Women whose pregnancy was terminated for a fetal anomaly were excluded. Approximately four times the number of controls as cases were randomly selected from the perinatal database in each province. Women were eligible to participate if they lived in the study area for at least the first five months of their pregnancy, delivered in the study area, and were resident in the study area at the time of recruitment.

Subjects completed a telephone interview that collected information on water consumption, and other water use behaviours. Residential tap water samples were collected from all subjects who lived in an area served by a public water supply. Water samples were collected in a 100 ml amber glass bottle and HAA analyses were accomplished via a gas chromatographic method. The water sample was timed to occur at approximately one year beyond the time when subjects were 4–5 months pregnant. Disinfection by-product levels were assumed to be zero for subjects served by a private well. If a subject had moved since the time when she was 4–5 months pregnant, a surrogate sample was collected from a public building close to the subject’s former residence. The estimated by-product level for the distribution system corresponding to the subject’s place of employment was used to assign the contribution of water consumption at work.

Abbreviations: BDCM, bromodichloromethane; DCAA, dichloroacetic acid; CI, confidence interval; HAA, haloacetic acid; RR, relative risk; TCAA, trichloroacetic acid; THM, trihalomethane
Main messages

- Trihalomethanes (THMs) occurring in public drinking water sources have been investigated in several epidemiological studies of fetal death and results support a modest association.
- Apart from trihalomethanes, several other classes of by-products are formed during water treatment.
- Among the classes of by-products formed, haloacetic acids (HAAs) are second in occurrence after THMs and can often equal the total THM concentrations.
- No association between HAA exposures and stillbirth risk was observed after controlling for THM exposures.

Measurement of exposure

The HAA measure was the sum of mass concentrations of nine haloacetic acid species. Exposure measures were also created for DCAA, TCAA, and total brominated HAAs. A measure representing the sum of brominated HAAs was created because the individual brominated compounds tended to occur in very low concentrations. Total exposure metrics were based on the product of volume of water consumed at home and work and HAA tap water level. Because they are non-volatile, showering and bathing are not important exposure routes for HAAs.20 21 Boiling water and home treatment devices were assumed to have a negligible effect on showering and bathing) and has been described previously.13

Analyses

The odds ratio was used as an estimate of relative risk. Relative risks (RR) and 95% confidence intervals (CI) adjusted for potential confounders were calculated using logistic regression. Information on potential confounding factors included factors pertaining to past pregnancy history, information pertaining to the index pregnancy, information on jobs held during pregnancy, socioeconomic factors, and smoking during pregnancy. Potential confounders were entered into a multivariate model along with the total HAA exposure variable. Factors were kept in the model and considered confounders if the change in effect size for any category of total HAA was 10% or greater. This confounder model was used for all of the specific HAA exposures and in models adjusted for potential confounders.

Categorical representations of HAA exposures were based on a zero exposure group and tertiles of the control distribution of exposure. The THM measures were found in a previous analysis to follow a log linear pattern with stillbirth risk and were modelled as continuous variables in this analysis to overcome the potential for collinearity with HAA exposures.14 Analysis was conducted with and without adjustment for total THM exposure.

RESULTS

A letter inviting eligible subjects to participate was sent to 184 stillbirth cases and 580 live birth controls. Of these, a positive reply card was received by the study investigators from 61% of cases (n = 112) and from 68% of controls (n = 398).

Table 1 presents the distribution of HAA exposures for cases and controls. All distributions were positively skewed due to the high prevalence of zero HAA exposures. The median and 90th centile of household total HAA were similar for cases and controls. Among both cases and controls, more than 10% of subjects were exposed to total HAA in household water above 60 μg/l.

The occurrence of household HAA and THM tap water concentrations was highly correlated (r = 0.81). However, the correlation between THM and HAA total exposure metrics, which also accounted for the contribution of water use behaviour to exposure was lower (r = 0.68).

Table 2 presents the distribution of cases and controls for the total HAA exposure metrics and relative risks adjusted for potential confounders. In order to determine the effects of HAA exposures independent of THMs, relative risks were also estimated controlling for the continuous representation of total THM exposure.

In analyses adjusted for covariates not including other chlorination by-products, relative risks of greater than 2 were observed for an intermediate category of exposure for total HAA and DCAA measures. However, the pattern of risk was not consistent with a dose response, as for each measure, the relative risk associated with the highest category of exposure was lower and confidence intervals included the null value. After adjustment for total THM exposure, the risk estimates for intermediate exposure categories were diminished and all confidence intervals included the null value. TCAA and

<table>
<thead>
<tr>
<th>Table 1</th>
<th>Cases and control distribution of household and total HAA exposures</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cases</td>
</tr>
<tr>
<td></td>
<td>Centiles</td>
</tr>
<tr>
<td></td>
<td>25th</td>
</tr>
<tr>
<td>Household (μg/l)</td>
<td></td>
</tr>
<tr>
<td>Total HAA</td>
<td>0.0</td>
</tr>
<tr>
<td>DCAND</td>
<td>0.0</td>
</tr>
<tr>
<td>TCAA</td>
<td>0.0</td>
</tr>
<tr>
<td>Brominated HAAs</td>
<td>0.0</td>
</tr>
<tr>
<td>Total exposure (μg/l/day)</td>
<td></td>
</tr>
<tr>
<td>Total HAA</td>
<td>3.0</td>
</tr>
<tr>
<td>DCAND</td>
<td>0.0</td>
</tr>
<tr>
<td>TCAA</td>
<td>0.0</td>
</tr>
<tr>
<td>Brominated HAAs</td>
<td>0.0</td>
</tr>
</tbody>
</table>
brominated HAA exposures were not associated with stillbirth risk in either THM adjusted or unadjusted analysis. The relative risks for total THM in these models (not presented), reflect risk estimates previously reported from these data. 13

In a previous publication examining THM exposures and stillbirth risk, the strongest association among specific THMs was observed for bromodichloromethane. 13 In the analysis of HAA exposures, similar results were observed when adjustment was made for BDCM exposures (not presented).

DISCUSSION

Investigations of the relation between disinfection by-products and reproductive outcomes have thus far focused on exposure to trihalomethanes. Haloacetic acids are common by-products of water disinfection and can occur in concentrations as high as THMs. We investigated the association between exposure in pregnancy to HAA compounds in drinking water and risk for a stillbirth and assessed the relation between exposure in pregnancy to HAA compounds and reproductive outcomes have thus far focused on exposure to THMs and intrauterine death is suggested in the epidemiological literature, causal mechanisms are not understood. THMs represent only one class of disinfection by-product, and other classes of by-product could be equally important in this relation. A relation between total THM and in particular BDCM and stillbirth risk was observed in our previous publication on this case-control study. The findings presented here focus on risk of stillbirth in relation to the next most prevalent class of disinfection by-products, HAAs, and exposure to this class of by-products was not found to be related to risk after controlling for THM or BDCM exposure.

ACKNOWLEDGEMENTS

This research was funded by the Toxic Substance Research Initiative, a research programme managed jointly by Health Canada and Environment Canada, and by the Canadian Chlorine Coordinating Committee. LD and BAA are supported by a Clinical Research Scholar Award from Dalhousie University.

We thank the study coordinators, Celine Zakos and Adelia Trenchard. We are grateful for assistance from the Reproductive Care Program of Nova Scotia, the Perinatal Partnership Program of Eastern and Southeastern Ontario, and the Analytical Services Unit of Queen’s University. We thank all the participating physicians and hospitals.

Authors’ affiliations

W D King, Department of Community Health and Epidemiology, Queen’s University, Kingston, Ontario, Canada

LD Dodds, A C Allen, B A Armson, D Fell, Perinatal Epidemiology Research Unit, Departments of Obstetrics and Gynaecology and Pediatrics, Dalhousie University, Halifax, Nova Scotia, Canada

C Nimrod, Department of Obstetrics and Gynaecology, Ottawa University, Ottawa, Ontario, Canada

Correspondence to: Dr W King, Department of Community Health and Epidemiology, Abramsky Hall, Queen’s University, Kingston, Ontario, K7L 5H6, Canada; kingw@post.queensu.ca

Accepted 12 May 2004

REFERENCES

Committee on Publication Ethics Seminar 2005
Friday 11 March 2005, 9.30 am – 5 pm, BMA House, London

This year’s seminar will focus on COPE’s new Code of Conduct for Editors and interactive workshops on common ethical and editorial dilemmas. The seminar is for editors, authors, and all those interested in increasing the standard of publication ethics.

The Code aims to set a new basic standard for the ethical conduct of editors and sets out guidelines for quality and correcting the record, standing by decisions made, ethics committee agreement, consent for publication confidentiality of submitted material, guidance to authors, pursuing misconduct, relationship to publishers, owners, and advertisers, and conflict of interest. The code also creates a mechanism to refer a complaint to COPE if an editor has breached the code.

The seminar will include:
- The new Code of Conduct for Editors
- Dr Iona Heath, Chair BMJ Ethics Committee—research, audit, and ethics committee approval
- COPE’s new website—full text and keyword searching for COPE’s advice on specific issues, for example research misconduct, conflict of interest, and deception
- Interactive workshops—common ethical and editorial dilemmas for editors
- Opportunities to network with other editors and share your experiences and challenges

The seminar is free for COPE members and £30.00 for non-members. Numbers are limited and early booking is advisable. For registrations or more information please contact Sam Knottenbelt at cope@bmjgroup.com or call 020 7383 6602. For more information on COPE see www.publicationethics.org.uk/