Evaluation of the quality of coding of job episodes collected by self questionnaires among French retired men for use in a job-exposure matrix

C Pilorget, E Imbernon, M Goldberg, S Bonenfant, Y Spyckerelle, B Fournier, J Steinmetz, A Schmaus

Background and Aims: The ESPACES study was intended to identify retirees who may have been, according to their job descriptions, exposed to asbestos during their working lives. As part of this study, we analysed the quality of the occupation and activity sector coding as well as its effect on the subjects’ exposure status.

Methods: The occupation and activity sector for a sample of 450 retired men were coded twice (with the second coder blinded to the first result), according to the international codes for industries (ISIC-1975) and occupations (ISCO-1968). For each series, linking the information about a job episode (dates, ISIC code, ISCO code) with the matrix allowed attribution of a probability of asbestos exposure to each episode and each subject. The asbestos exposure in the two series was compared by the kappa reproducibility coefficient.

Results: The analysis concerned 425 questionnaires. There was at least one difference in the code for either activity sector (ISIC) or occupation (ISCO) in half the episodes (50.2%). The exposure status estimated by the job-exposure matrix did not change between the series for 84.7% of the subjects. The kappa coefficient was 0.64 for all questionnaires, 0.70 when the questionnaire was coded twice by the same coder, and 0.62 when coded by two different coders.

Conclusions: Despite intra- and inter-differences between coders, the coding of job episodes for the ESPACES study appears satisfactory and hence indicates that the assessment of the subjects’ asbestos exposure was assessed without major distortions. This study underlines the usefulness of employing coders specifically trained for this technique.

Exposure assessment is an important stage in epidemiological studies, especially those of diseases with long latency periods when exposures that may have occurred in the distant past have to be taken into account. The objective of the ESPACES (Evaluation of Post-retirement Asbestos Follow-up in Health Examination Centres) project was to identify among the retired men in the French population those who had been exposed to asbestos during their working life, to inform them of their entitlement to post-retirement follow-up, and to assist them with the necessary procedures, in accordance with the 1995 French regulation instituting such medical follow-up for those exposed to carcinogenic substances while employed. The ESPACES project, which offers a tool for identifying these populations, could help increase the hitherto sparse application of this regulation.

In this view, asbestos exposure was assessed by a job-exposure matrix (JEM) specific for asbestos and structured according to standard international classifications, ISCO (International Standard Classification of Occupations) for occupations and ISIC (International Standard Industrial Classification of all Economic Activities) for activity sectors. Individual exposure was assessed by linking each job episode, obtained through a questionnaire completed by the retired subjects, with the matrix by the means of occupation and activity sector codes.

The use of a JEM to assess individual exposure has long been known to involve some misclassification engendered by the imprecision of the job exposure assessments included in the matrix. Much less attention has been paid to the frequency and consequences of the misclassification which can also stem from the process of ISCO-ISCO coding of the job titles and activity sectors reported by the subjects.

In this study, a subgroup of the questionnaires of subjects included in the ESPACES project were coded twice. Our objective was to assess the quality of the coding of the “working life” portion of the questionnaires and its impact on the subjects’ asbestos exposure classification.

METHODS

Six thousand recently retired men (in 1994, 1995, and 1996) were randomly selected from the National Health Insurance files in six French “départements” (administrative units) in 1998. They received a self administered questionnaire through the mail, and 59.5% responded (n = 3572).

The questionnaire included a section about their work history; it asked them to list their successive job episodes, with the period (start and end dates), employer’s name, activity sector, and job, all as free response questions. Each questionnaire was then coded manually by specially trained staff, following the international classifications of industries (ISCO) and of occupations (ISCO). ISIC uses four digits, and ISCO five.

We used a randomly selected sample of 450 questionnaires from the ESPACES study to assess the quality of the coding procedure. These 450 questionnaires were first distributed among three coders for the initial coding. Three weeks later, each questionnaire was coded again, with the coder blinded to...

Abbreviations: ISOC, International Standard Classification of Occupation; ISIC, International Standard Industrial Classification of all Economic Activities; JEM, job-exposure matrix
the first result. For the second coding, the questionnaires were distributed so that each coder worked on 50 questionnaires she had coded the first time and on 100 questionnaires coded by the other two coders, so that we could analyse the intra- and inter-coder variability.

After verifying the consistency of identification numbers, dates of birth, and beginning and end dates of job episodes, we excluded 25 subjects from the analysis (subjects present in only one coding series, identification number error).

In both series, we computed the frequencies of the activity sector (selected on the first digit of the ISIC code), the activity categories (first two digits of ISIC code), main occupational groups (first digit of the ISCO code), and occupational subgroups (first two digits of the ISCO code). For each of these categories, we compared the frequency of occurrence ranking of ISIC and ISCO codes between the two series by means of the Spearman rank correlation coefficient. The job history thus coded was then linked with an asbestos specific JEM to assess asbestos exposure for each job episode of each subject. Its job axis combines ISCO and ISIC codes. This JEM provides for each ISCO/ISIC combination: (1) an index of the probability of asbestos exposure (non-exposed, 0.05, 0.3, 0.5, 0.7, 1); (2) an index of the frequency of exposure; and (3) an index of the intensity of exposure. When significant technical or protective changes occurred that were likely to modify exposure conditions, the corresponding date was included in the matrix, and the exposure indices modified; thus, the JEM might contain several periods for the same ISCO/ISIC combination. This JEM includes 10 625 codings to assess asbestos exposure for each job episode of each subject. It was elaborated by experts and was already used to assess the asbestos exposure in different epidemiological studies or to validate other assessment methods. The exposure status of each episode was defined as “exposed” if the matrix assigned a non-zero probability, as “non-exposed” if the probability is zero, and as “not classified” if the linkage with the matrix did not succeed. The exposure status for each subject was defined as “exposed” if at least one job episode was classified with a non-zero probability. A lifetime exposure probability was assigned to each subject: it corresponded to the episode with the highest probability.

We also studied the agreement of the exposure assessment results in both series, for each job episode and each subject, with the unweighted kappa reproducibility coefficient (κ), which quantifies the reproducibility of qualitative variable measurements. Moreover, the coder effect was studied more specifically by analysing, for individual coders and for pairs of coders, the coding agreement, the resulting exposure, and probability of exposure.

Finally, the asbestos exposure classification by the matrix in each series was compared with the results obtained by the trained physicians who interviewed the subjects. We used SAS software for the analysis.

RESULTS
The final analysis involved 425 subjects with 2099 job episodes. Overall, the questionnaires of 146 subjects (34.4%), corresponding to 755 episodes (36%), were treated twice by the same person, and the others (279 subjects and 1344 episodes) coded by two different coders.

Occupations and activity sectors
The analysis of the coding differences shows that 1054 episodes (50.2%), corresponding to 354 subjects (83.2%), included at least one coding difference (that is, the codes used in the two series were different, regardless of the digit which differed) for activity sector (ISIC) or occupation (ISCO), while 278 episodes (13.2%) involving 137 subjects (32.2%) differed for both variables. The coding differences for activity involved 30.8% of the episodes (64.9% of subjects), and those for occupations 32.7% of the episodes (65.1% of subjects).

No ISIC code was assigned for 6.8% of the job episodes in the first coding series and 6.4% in the second. Two main industries (first ISIC digit) represented more than half the ISIC codes used in all the questionnaires: these were manufacturing (37.5% in both series) and construction and public works (22.4% in the first series and 23.4% in the second). The frequency rankings for the activity sector codes were very close (Spearman correlation coefficient: 0.98; p ≤ 0.01). The calculation for the ranking of specific activity category (first two ISIC digits) yielded the same Spearman correlation coefficient (r = 0.98).

The main occupational group (first ISCO digit) coded most frequently included plant and machine operators and assemblers (including drivers): they accounted for 71.8% and 71.4% of the ISCO codes used in both series. They were followed by skilled agricultural and fishery workers (6.3% and 6.1%), professionals (5.9% and 5.4%), clerks (4.2% and 4.6%), and service workers and shop and market sales workers (3.8% and 4%). In both series, no code was assigned in 3.1% of the episodes. The frequency rankings for the main occupational groups and for the occupational subgroups (first two ISCO digits) were also very close (respective Spearman correlation coefficients: 0.97, p ≤ 0.01; and 0.93, p ≤ 0.01).

Asbestos exposure
The asbestos exposure in job episodes and subjects in the two coding series after linkage with the JEM are shown in table 1 and the kappa reproducibility coefficients for exposure variables according to coder pairs are shown in table 2.

In 81.7% of the job episodes, the asbestos exposure assessment did not change from the first to the second series. The kappa was 0.69 for the episode exposure status. When we

<table>
<thead>
<tr>
<th>Subjects</th>
<th>1st series</th>
<th>2nd series</th>
<th>1st and 2nd series</th>
</tr>
</thead>
<tbody>
<tr>
<td>n (%)</td>
<td>n (%)</td>
<td>n (%)</td>
<td></td>
</tr>
<tr>
<td>Exposed*</td>
<td>1044 (49.7)</td>
<td>1039 (49.5)</td>
<td>918 (43.7)</td>
</tr>
<tr>
<td>Not exposed†</td>
<td>784 (37.4)</td>
<td>819 (39)</td>
<td>666 (31.7)</td>
</tr>
<tr>
<td>Not classified‡</td>
<td>271 (12.9)</td>
<td>241 (11.5)</td>
<td>132 (6.3)</td>
</tr>
</tbody>
</table>

*Exposed episodes: exposure probability >0; exposed subjects: at least one episode was classified as exposed.
†Not exposed episodes: exposure probability = 0; not exposed subjects: all the episodes were not exposed.
‡Not classified episodes: the linkage with the matrix did not succeed; not classified subjects: all the episodes were not classified, or the episodes were either not exposed or not classified.

Table 1: Asbestos exposure in job episodes [n=2099] and subjects [n=425] in the two coding series after linkage with the job-exposure matrix.
analysed the concordance of the exposure probability levels by episode, the reproducibility coefficient was 0.66. The percentage of agreement varied with the exposure probability: 85% of the episodes classified as non-exposed in the first series were classified as non-exposed in the second and 80% of exposed episodes with probability superior or equal to 0.7 in the first series were therefore classified as exposed. The agreement decreased when probability was 0.3 (73.6%) and when it was 0.05 (68.5%).

In the most frequent occupational group (plant and machine operators and assemblers), it was 0.65 (details not shown), but we observed differences between corresponding occupational subgroups ($\kappa = 0.84$ for painters, 0.76 for builders and carpenters, 0.35 for metal manufacturing and fashioning workers, and 0.03 for food and drink workers). In the other occupational groups, we observed variations to the reproducibility coefficient for the episode exposure probability (details not shown): kappa was very high ($\kappa = 0.81$) for specific occupations (30 000 \leq CITP $< 60 000$, services workers) but low ($\kappa = 0.29$) for less specific occupations (20 000 \leq CITP $< 30 000$, directors and administrative managers).

Finally, 84.7% of the subjects had the same exposure status in both coding series (table 1). Status changed from exposed to unexposed (or vice versa) in 4.5% of the cases. Of the subjects classified as exposed during the first series, 95% were also classified as exposed in the second, while 2% were classified as not exposed and 3% were not classified. For the subjects classified as non-exposed in the first series, 64.7% retained the same exposure status in the second series, 19.1% were classified as exposed, and 16.2% could not be classified. The kappa reproducibility coefficient for the subjects’ exposure status was thus 0.64, and that for their exposure probability 0.60 (table 2).

The distribution of coding differences according to coder pairs (table 3) showed that 36% of the episodes (74.6% of subjects) coded twice by the same coder had at least one difference, while 58.2% of those (87.8% of subjects) coded by two different coders differed. Simultaneous differences for both codes (ISIC and ISCO) were found for 8.5% of the episodes (25.3% of subjects) coded by the same person and 15.9% of the episodes (35.8% of subjects) coded by two different people.

Reproducibility coefficients were also calculated with the coders taken into account (table 2). The coefficient of reproducibility for all the questionnaires treated twice by the same coder was 0.78 for episode exposure status, 0.77 for episode exposure probability, 0.70 for subject exposure status, and 0.66 for subject exposure probability. We noted differences in reproducibility according to the coders, in particular for subject exposure status, with coefficients ranging from 0.86 for coder 1 to 0.53 for coder 2.

When looking at the questionnaires treated by different pairs of coders, reproducibility was 0.64 for episode exposure status, 0.60 for episode exposure probability, 0.62 for subject exposure status, and 0.57 for subject exposure probability. The coefficients of reproducibility calculated according to coder pairs varied from 0.57 to 0.69 for episode exposure and 0.49 to 0.65 for subject exposure.

We were able to compare the matrix classification with the physician’s assessment (after interview) of those subjects who came for a medical examination (table 4). In the first coding, 29.5% of the subjects classified as exposed by the matrix were judged to be non-exposed by the physician (n = 31) and in the second coding, there were 31.8% (n = 35).

Similarly, we compared the matrix classification and the classification reported by the subjects in the questionnaires
Table 4 Subjects’ asbestos exposure status according to the matrix and according to the physician in both coding series

<table>
<thead>
<tr>
<th>Exposure according to matrix</th>
<th>Not classified</th>
<th>Exposed</th>
<th>Not exposed</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Not classified</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1st series</td>
<td>3</td>
<td>5</td>
<td>6</td>
<td>14</td>
</tr>
<tr>
<td>2nd series</td>
<td>1</td>
<td>5</td>
<td>2</td>
<td>8</td>
</tr>
<tr>
<td>Exposed</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1st series</td>
<td>15</td>
<td>59</td>
<td>31</td>
<td>105</td>
</tr>
<tr>
<td>2nd series</td>
<td>17</td>
<td>58</td>
<td>35</td>
<td>110</td>
</tr>
<tr>
<td>Not exposed</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1st series</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>2nd series</td>
<td>0</td>
<td>1</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>Total</td>
<td>1st series or 2nd series</td>
<td>18</td>
<td>64</td>
<td>42</td>
</tr>
</tbody>
</table>

Table 5 Subjects’ asbestos exposure status according to self report and according to the matrix in both coding series

<table>
<thead>
<tr>
<th>Exposure according to subject</th>
<th>Not completed</th>
<th>Exposed</th>
<th>Not exposed</th>
<th>Doesn’t know</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exposure according to matrix</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Not classified</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1st series</td>
<td>0</td>
<td>18</td>
<td>18</td>
<td>18</td>
<td>54</td>
</tr>
<tr>
<td>2nd series</td>
<td>0</td>
<td>14</td>
<td>18</td>
<td>16</td>
<td>48</td>
</tr>
<tr>
<td>Exposed</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1st series</td>
<td>3</td>
<td>99</td>
<td>117</td>
<td>84</td>
<td>303</td>
</tr>
<tr>
<td>2nd series</td>
<td>3</td>
<td>102</td>
<td>126</td>
<td>86</td>
<td>317</td>
</tr>
<tr>
<td>Not exposed</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1st series</td>
<td>2</td>
<td>3</td>
<td>45</td>
<td>18</td>
<td>68</td>
</tr>
<tr>
<td>2nd series</td>
<td>2</td>
<td>4</td>
<td>36</td>
<td>18</td>
<td>60</td>
</tr>
<tr>
<td>Total</td>
<td>1st series or 2nd series</td>
<td>5</td>
<td>120</td>
<td>180</td>
<td>120</td>
</tr>
</tbody>
</table>

DISCUSSION AND CONCLUSION
In this study, we compared the results of two series of coding of the occupations and activity sectors of a sample of men. More than half the episodes, corresponding to more than 83% of the subjects, were coded differently between the two series. This high proportion of differences is attenuated by the analysis of the distribution of sectors (first ISIC digit) and categories of activity (first two ISIC digits) and the main groups (first ISCO digit) and subgroups (first two ISCO digits) of occupations; we found a similar distribution in both series since the Spearman rank correlation coefficients were very high (≥0.93). Moreover, only 13.2% of the episodes (32.2% of the subjects) differed for both activity and occupation. These coding differences are often minimal, because many involve just the last two digits of the codes used for a detailed definition of the occupation, but not systematically involving any change in the exposure evaluation: most of the episodes (81.7%) and subjects (84.7%) had the same exposure status (exposed, not exposed, or not classified) in both series and a change from exposed to non-exposed status or a change from non-exposed to exposed status affected only 4.5% of all the study subjects and 5.4% of those for whom a coding difference was found. The unweighted kappa coefficient of reproducibility was 0.64 for subject exposure status, a figure indicating satisfactory agreement. The agreement for episode exposure is also acceptable (κ = 0.69). The analysis of the exposure probability agreement also indicates satisfactory results since κ = 0.66 for the episodes and 0.60 for the subject (maximum episode probability).

Inter-coder differences were more common than intra-coder differences: 58.2% of the episodes coded by two people had at least one difference, compared with 36% for those coded by the same person; the respective figures for at least one difference for both codes were 15.9% and 8.5%. This difference was also observed for the coefficients of reproducibility, which were higher for the questionnaires coded both times by the same person: κ ranged from 0.66 to 0.78, depending on the exposure variables and tended towards very good agreement. For two coders, κ ranged from 0.57 to 0.64, a less satisfactory result. Similarly, the analysis by pairs of coders showed good agreement for the episodes coded by the same coder (coder 1, 2, or 3) (κ ranged from 0.75 to 0.80 for exposure status and from 0.75 to 0.77 for exposure probability), while the agreement for episodes measured by pairs of coders (1–2, 1–3, and 2–3) was systematically lower (κ ranged from 0.57 to 0.69). The reproducibility of subject exposure status varied more according to the specific pair of coders: κ ranged from 0.53 (pair 2–2) to 0.86 (pair 1–1) for the same person, and from 0.58 (pair 1–3) to 0.65 (pair 2–3) for two different coders.

This inter-coder variability in the consistency of exposure assessments has been observed in other studies for exposure
As mentioned in the ESPACES study, we observed that the disagreement between the subjects and the matrix decreased while the probability of exposure increased. Among the subjects classified as exposed by the matrix with a low probability (0.05), 15.7% have declared that they have been exposed, whereas the percentage reached 67% for subjects exposed with the maximal probability given by the matrix.

All the subjects who have declared that they have been exposed during their job history and the subjects classified as exposed by the JEM with a probability higher than 0.05, were invited for an interview with a physician specially trained for this exercise. Only 124 among the 303 eligible persons came to the health centre for the interview.

During the interview, the exposure circumstances were discussed between the subject and the physician. A comparison of subject exposure according to the JEM in two coding series, with expert physicians as the reference, found that 56.2% of the subjects reported they have been exposed to asbestos but whom the matrix considered to be possibly exposed (65% and 70% in each series); this result shows that some workers are ignorant of their own exposure, an observation made in other studies. In the ESPACES study, we observed that the disagreement between the subjects and the matrix decreased while the probability of exposure increased. Among the subjects classified as exposed by the matrix with a low probability (0.05), 15.7% have declared that they have been exposed, whereas the percentage reached 67% for subjects exposed with the maximal probability given by the matrix.

The ESPACES pilot study was intended to identify retirees who may have been exposed to asbestos during their working lives. For this objective, we decided to tune the JEM to its maximal sensitivity, regarding as potentially exposed each worker who may have been exposed to asbestos during their working life. This approach was to validate the method used before its extension to other steps of the pilot study, we used only the ISIC–ISCO classification system we used. Accordingly, the code for unspecified labourers (ISCO = 99910) was used fairly frequently in both series (8.3% and 8%); in particular, it was often systematically used to code occupations for which insufficient information was available.

The use of national codes (PCS for occupation and NAF for activity sector), better adapted to this type of study and allowing greater precision, would certainly have limited some of these problems, but would not have been compatible with the matrix we used, which was constructed on the basis of the international classifications.

Finally, it appears that, despite intra- and inter-coder differences, the coding of job episodes was satisfactory, since the agreement between the two series was adequate; we thus conclude that the subjects’ asbestos exposures were assessed without major distortions. Overall, the methodological difficulties encountered in the coding stage do not appear to have overly influenced the results for asbestos exposure. Moreover, the interview with a trained reference physician allowed verification of the job history and validation of the exposure assessment provided by the JEM; we were thus able to limit the extent of misclassification generally associated with this method. One particularly interesting finding from this work comes from the observation of substantial differences between the coders in individual reproducibility coefficients. This indicates that adequate training of specialist coders is likely to improve the quality of coding for activity sectors and occupations. We can therefore recommend the use of specialist coders in epidemiological studies in general populations that use a job-exposure matrix method, to improve the quality of the exposure data. Our results suggest also that the quality of exposure assessment in population based studies could be ameliorated by the use of interview to obtain subjects’ job histories rather than self administered questionnaires.

The ESPACES pilot study was intended to identify retirees who may have been exposed to asbestos during their working lives. For this objective, we decided to tune the JEM to its maximal sensitivity, regarding as potentially exposed each person with a non-zero probability of exposure, and for the other steps of the pilot study, we used only the ISIC–ISCO codes yielded by the first coding procedure. The aim of this work was to validate the method used before its extension to a larger population.

ACKNOWLEDGEMENTS

The authors thank Drs Dominique Coste, Patrick Lepinay, Xavier Pagnon, Brigitte Varsat, Bertrand Wadoux, and M Jean-François Meyer for their contribution to the ESPACES study.
Main messages

- More than half the episodes (more than 83% of the subjects) were coded differently between the two series, but most of the episodes (81.7%) and subjects (84.7%) had the same exposure status (exposed, not exposed, or not classified).
- The unweighted kappa coefficients of reproducibility were 0.64 for subject exposure status, 0.69 for episode exposure, 0.66 for episode exposure probability, and 0.60 for subject episode probability.

Policy implication

- To improve the quality of the exposure data in general population based epidemiological studies that use a job-exposure matrix, the coding of jobs and activity sectors should be performed by highly experienced coders.

their collaboration in the health examination centres, Mrs Joelle Févotte for her participation in coder training, and also the coders.

Authors’ affiliations

C Pilorget, M Goldberg, S Bonenfant, A Schmaus, INSERM Unité 88–IFR 69, 14 rue du Val d’Osne, 94415 Saint-Maurice, France
E Imberson, Institut de Veille Sanitaire (InVS), Département Santé Travail, 94415 Saint-Maurice, France
Y Spyckereille, B Fournier, J Steinmetz, Centre technique d’appui et de formation des centres d’Exams de Santé (CETAF), 54500 Vandoeuvre les Nancy, France

REFERENCES
