The relation reported by Harrison et al., for CO and NO₃ is likely a result of these pollutants being a gas, their ability to diffuse, low reactivity, and similarity in concentration between indoor and outdoor environments. A personal cloud increment must be incorporated into the PM₁₀ measurement because of greater variability of concentration from location to location. A microenvironment represents a similar location and the personal cloud is a correction factor extrapolating for the static exposure to personal measurements. It must be noted that this adds a degree of uncertainty in extrapolating exposure from one sampling method to the other. Even though static samples may be reported as similar, they will ultimately exhibit a lower concentration than personal measurements.

Harrison et al provided summation of their data in the form of arithmetic mean (AM) and standard deviation. When data from tables 2 and 3 in their paper were evaluated for form of distribution, using the Shapiro-Wilk test, most exhibited a non-normal distribution (see table 1). However, due to the small number of samples in the data of Harrison et al., the actual form of distribution cannot be determined. It is suggested that the logarithmic form best represents airborne pollutants, including the data of Harrison et al. When providing pollutant data, it has been suggested to include summary statistics representative of its form of distribution. Data should be shown as AM, standard deviation, range, geometric mean, and geometric standard deviation (GSD). It has been suggested that health effects from exposure are more closely related to AM values, especially for those that are chronic in nature, making AM an important summary value to report. Reporting all summary statistics will allow future investigators to select summary data most relevant to their purpose.

Since many airborne pollutants are distributed throughout a location, such as the home, modelling will prove useful in establishing a relation between personal and static samples. However, this relation may not only depend on sampling locations and emission pathways, but on the actual pollutant as well. Variability among samples must also be considered when predicting exposure levels. Most sample populations exhibit a GSD (day to day variability) of 2.0 to 3.0. The probability of samples with this variability being “related” is about 17–28%. The GSD for the data reported by Harrison et al., ranged from 1.4 to 2.6. Thus, sample variability raises issues with the predictability of accuracy in exposure estimation. This variability may also skew modelling as well, resulting in fallacious interpretations; although as mentioned in Harrison et al., when the population or sample becomes larger or pooled data these influences may become diminished.

Historically, microenvironmental and personal sampling, while studies such as that performed by Harrison et al., question this concept. Establishment of a relation between these two sampling methods will allow incorporation of additional data into occupational, environmental, and epidemiological studies, although caution must be applied in interpreting any relation based on previous findings. Thus, care must be exercised when evaluating studies that solely use static sampling as the method of estimating personal exposure.

J H Lange
EnvironSafe Training and Consultants, Inc., PO Box 114022, Pittsburgh, PA 15239, USA; john.pam.lange@worldnet.att.net.

References
the first seizure attack. He presented with complaints of sexual potency, apathy, headache, leg cramps, and reduction of memory deficit, changes of mood, and changes in liver function tests. He began to suffer from memory deficit, changes of mood, and changes in liver function tests. He began to show signal changes in the left frontotemporal region. Audiometric examination showed marked sensory-neural loss. Somatic sensory evoked potentials and motor evoked potentials were normal. Electromyogram of the tibialis anterior and first interosseus showed normal amplitude and duration of the motor units with normal recruitment. A standardized neuropsychological evaluation revealed mild reduction of memory and attention. The serum concentration of bromide was moderately increased (11.7 µg/ml; normal <5 µg/ml).

Neurological effects primarily referable to the central nervous system following severe inhalation of CH₃Br have frequently been reported. Myoclonus and seizures are typical of acute exposure, particularly in patients with previous low level chronic exposure.

The most singular aspect of this case is the observation that the physician performing surveillance at the workplace failed to recognize the occurrence of the encephalopathy over a very long period (nine years!). This lack of efficiency is inconceivable and points out the necessity to verify and to proceed the competence of medical doctors practising in this field.

In Italy, the adoption of European Union directives assigned medical surveillance of workers to specialists in occupational medicine, and to other physicians, already experienced in the field. The number of specialists assigned to workers’ surveillance (9000) was greater in Italy than in the United States. Strong corporate interests have now obtained the admission into this critical field of 40 000 workers to specialists in occupational medicine, without awareness and stigma. Although the clinic population reflected realistically the magnitude of the need felt by the workers for mental health services, periodic screening with standardized and reliable instruments may elucidate the mental health needs of the population, based on which optimum care programmes can be planned.

Competence at the workplace

The discussion opened by Bertazzi is worth investigating practical considerations. Until 1996 every physician in Italy had licence to practice health surveillance in the workplace; differences of competence between physicians were obviously present, and this undoubtedly lead to inequalities in workers’ safety and health levels. In 1996 we observed a case of methyl bromide (CH₃Br) induced toxic encephalopathy, which was not recognised for a long period. This patient was a 44 year old man with no significant past medical history. When he was 31 years old, he began working for a firm specialising in agricultural pest control. On his fourth season at this workplace, an accidental leakage from the compressed gas cylinder splashed CH₃Br on to him, causing dermal burns and vesicles on the upper and lower limbs. Immediately after the splashing, he reported heavy headedness and drowsiness. In the following 24 hours he had episodes of vomiting, muscle fatigue (mainly in the lower limbs), together with paraesthesia, unsteadiness, gait, myoclonic jerks of the face, and finally seizure attacks. Liver function testing showed increased ALT, AST, and γ-glutamyltransferase levels. He was treated with clonazepam and carbipato, and was permitted to continue his work. The accident was not notified to the National Institute of Insurance for Work Injury and Disease (INAIL).

In the following years, periodic medical examinations at the workplace confirmed a mild increase of liver enzymes, while markers of viral hepatitis proved to be negative. The worker continued to do his job, and to be exposed to CH₃Br. Some other exposures were also possible, but only one of which (chemical burn of the right foot) was reported to INAIL. He continued to have seizures (five episodes at least, two of which occurred after acute/subacute exposures to CH₃Br), asthenia, and changes in liver function tests. He began to suffer from memory deficit, changes of mood, apathy, headache, leg cramps, and reduction of sexual potency.

He came to our observation nine years after the first seizure attack. He presented with myoclonus of the leg, and bilateral blepharoptosis. Action myoclonus was triggered by auditory stimuli, and increased with emotion.

The electroencephalogram showed bursts of slow anteromedial waves on the left side. The magnetic resonance image of the brain showed signal changes in the left frontotemporal region. Audiometric examination showed marked sensory-neural loss. Somatic sensory evoked potentials and motor evoked potentials were normal. Electromyogram of the tibialis anterior and first interosseus showed normal amplitude and duration of the motor units with normal recruitment. A standardized neuropsychological evaluation revealed mild reduction of memory and attention. The serum concentration of bromide was moderately increased (11.7 µg/ml; normal <5 µg/ml).

Neurological effects primarily referable to the central nervous system following severe inhalation of CH₃Br have frequently been reported. Myoclonus and seizures are typical of acute exposure, particularly in patients with previous low level chronic exposure.

The most singular aspect of this case is the observation that the physician performing surveillance at the workplace failed to recognize the occurrence of the encephalopathy over a very long period (nine years!). This lack of efficiency is inconceivable and points out the necessity to verify and to proceed the competence of medical doctors practising in this field.

In Italy, the adoption of European Union directives assigned medical surveillance of workers to specialists in occupational medicine, and to other physicians, already experienced in the field. The number of specialists assigned to workers’ surveillance (9000) was greater in Italy than in the United States. Strong corporate interests have now obtained the admission into this critical field of 40 000 workers to specialists in occupational medicine, without awareness and stigma. Although the clinic population reflected realistically the magnitude of the need felt by the workers for mental health services, periodic screening with standardized and reliable instruments may elucidate the mental health needs of the population, based on which optimum care programmes can be planned.

References

This book is unusual in the air pollution literature on two counts. Firstly, its author was a practising scientist in industry, so we get a refreshingly different slant on the issues. Secondly, while the book is heavily science based, it tackles head on that difficult area where science and policy meet or, more often, collide. Pearson does not shrink from pointing out the difficulties with the science, but also the difficult choices for policy. But this is done in a constructive and positive way—it would have been very easy for someone with the author's background to have delivered a critical polemic; as it is, the book gives a cool critique of the science but then suggests ways through the difficult abatement measures and policy issues in a well balanced final chapter.

The subject of the book is the policy driven science programmes in Europe and the USA, each of which was known as “Auto-Oil”. These were programmes designed to provide high quality scientific input on air quality emissions, modelling, and emission reduction techniques (including clean fuels) to studies aimed at producing optimum reductions in urban air quality in a selection of European cities, through agreements on EU regulations on vehicle emissions and on automotive fuel compositions. The European Auto-Oil programme was a major tripartite exercise involving the automotive and oil industries and the European Commission.

The book covers each of the scientific components of this exercise in both the EU and in the USA in a concise, yet comprehensive way. There is an introductory chapter describing the important pollutants, their sources, and effects on health, followed by chapters on air quality legislation in the USA and Europe, on air quality modelling, and on the often “Cinderella” subject of emission inventories. These latter two chapters are particularly good for the non-specialist. Chapters describing the separate European and USA Auto-Oil programmes are followed by one describing the air quality improvements already achieved in the “auto-oil” sector. These have been considerable—the single most significant measure reducing public exposure to air pollutants in the past 10 years has been the catalytic converter. The final chapter has already been mentioned and presents an excellent discussion on the practical steps which could be taken by the automotive and fuel sectors, and by traffic managers in the improvement of air quality.

Although primarily targeted at automotive engineers, the book will appeal to other scientists with an interest in air quality. It also provides a useful aide memoir for the specialist, particularly as the next phase of the process has just begun via CAFE, which is not an acronym connected with European coffee houses, but an important initiative of the European Commission to harmonise EU legislation in providing Clean Air For Europe.

M L Williams

First World Congress on Work-Related and Environmental Allergy (1st WOREAL), and Fourth International Symposium on Irritant Contact Dermatitis (ICD), Helsinki, Finland, 9–12 July 2003

Congress on Work-Related and Environmental Allergy
- Work related and environmental aspects of respiratory and skin allergy
- Specific issues related to pathophysiology and skin allergy
- Management and prevention of allergy

Irritant Contact Dermatitis Symposium
- Occupational irritant dermatitis
- Prevention of irritant dermatitis
- Alternative methods for the assessment of irritants
- Irritant dermatitis from cosmetics

Satellite events
- Satellite Symposia, 9 July 2003
- Allergy School, 9–10 July 2003
- 7th International NIVA Course on Work-Related Respiratory Hypersensitivity, 11–15 July 2003

Congress Secretariat
Ms Kirsu Saarelma, Congress Manager
Pyykkö & Saarelma Ltd
Limingantie 9
FIN-00550 Helsinki, Finland
Tel: +358 9 79 00 80
Fax: +358 9 757 36 30
Email: secretariat@woreal.org
Website: www.woreal.org

NIVA Training Programme 2003: Advanced Courses in Occupational Health and Safety

NIVA Training Programme 2003 offers 12 advanced courses on current themes of work life. Further information is available from the NIVA Office:

NIVA Nordic Institute for Advanced Training in Occupational Health
Töölöntie 51, 02150 Espoo, Finland
Tel: +358 9 47 471
Fax: +358 9 4747 2497, +358 9 2414 634
Email: niva@ttl.fi
Website: www.niva.org

Assessment of Psychological Factors at Work
3–6 March 2003, The Fell Hotel, Saariselkä (Lapland), Finland

Evaluation and Good Occupational Health Practice
23–27 March 2003, The Fell Hotel, Saariselkä (Lapland), Finland

Principles of Etiologic/Etiopathogenetic Research
11–16 May 2003, Hanasaari Cultural Center, Espoo (Helsinki), Finland

Toxicokinetic and Toxicodynamic Modeling in Occupational Health
15–19 June 2003, Red Cross Educational Training Center, Grissholms, Sweden

Work-related Respiratory Hypersensitivity
10–15 July 2003, Marina Congress Center, Helsinki South Harbour, and The Sunborn Yacht Hotel, Naantali, Finland

Bullying and Harassment at Work
11–15 August 2003, Hotel Eckero, Åland, Finland

Good Management Practice—Interaction of Environment, Safety and Quality
31 August–4 September 2003, Hotel Levinturi, Sirkka (Lapland), Finland

Workplace Health Promotion—Practice and Evaluation

Indoor Air Quality Problems—Link between Indoor Pollution, Psychological Factors and Complaints
22–26 September 2003, Vilvorde Course Center, Vilvorde (Copenhagen), Denmark

Occupational Health Risk Assessment and Management
6–10 October 2003, Medical Academy of Latvia, Riga, Latvia

Introduction to Occupational Epidemiology
23–29 October 2003, Hotel Gentolte (Copenhagen), Denmark

Work-related Musculoskeletal Disorders: Current Research Trends
1–7 November 2003, The Sunborn Yacht Hotel, Naantali, Finland