This hobby requires inspiration and breathing of large volumes of air, making the lung alveoli expand more than in other people. This fact could facilitate the penetration of carcinogens in the cells of the lung epithelium, and this could be more harmful in smokers. We have found no other studies that have reported this possible association. It would therefore be necessary to explore this association in greater samples of professionally exposed persons to determine whether this finding is consistent or due to chance.

A Ruano-Ravina, A Figueiras, J M Barros-Dios
Department of Preventive Medicine and Public Health, University of Santiago de Compostela, Spain

Correspondence to: Dr J M Barros-Dios, Department of Preventive Medicine and Public Health, University of Santiago de Compostela, C/ San Francisco s/n, Universidad de Santiago de Compostela, 15782 Santiago de Compostela, La Coruña, Spain; mbarros@usc.es

References

How important is personal exposure assessment in the epidemiology of air pollutants?

The paper by Harrison and colleagues1 and the accompanying editorial by Cherrie2 in the October 2002 issue of Occupational and Environmental Medicine address the important issue of personal exposure assessment (of air pollutants) in environmental epidemiology. After reading both papers we would like to make some comments with regard to the design, conduct and statistical analysis of the study by Harrison et al and at the same time answer the question raised by Cherrie in his editorial.

Coming from the occupational exposure assessment arena it is interesting to see that our environmental colleagues are still relying to a large extent on static (microenvironmental) sampling and even rely on shading to represent personal exposure. The latter brought back memories of old occupational hygiene textbooks with pictures of technicians standing with a sampling probe in the breathing zone of a worker (clearly hindered while carrying out his work task). It is interesting to note that Dr Cherrie’s very relevant earlier work3 on whether wearing sampling pumps affects exposure (it hardly did) was not mentioned in both papers.

The paper by Harrison and colleagues1 clearly states as one of its goals to answer the question “Does modelling through the use of microenvironment measurements and activity diaries produce reliable estimates of personal exposure to air pollutants?”. However, in the only setting where personal exposures were actually measured (phase 1, volunteers; with regard to phase 2 we do not think that shading results can be seen as equivalent to personally measured exposure) it is hard to grasp from both fig 1 and table 2 which exposure was actually modelled (1 hour averages, 2–3 day averages) and how (a formula was only provided for measurements within the susceptible groups).

When comparing direct personal measurements for CO and PM10 with the modelled results, the authors exclude any data that resulted in a not directly comparable—that is, when the volunteer spent most of their time out of house, and all the data for smokers. It is therefore not surprising that good correlations were found between the different results. Why were smokers excluded? Was their measured CO exposure representing a different kind of CO leading to a different health effect? We know that excluding smokers or people with unventilated gas heaters is common practice in the statistical analyses of environmental exposures, but this would only make sense if we were expecting different risks from the same exposure originating from different sources.

In fig 1 the authors present 120 comparable data points for 11 individuals; given the repeated nature of the sampling these data points cannot be seen as statistically independent. Putting a simple regression line through these points is therefore not correct and application of a mixed effects model would have been more appropriate. Besides that, when estimating environmental exposure, for instance, for a panel study, we are interested in the full range of exposures both in the temporal and spatial sense (not only for the room with the static sampler). However, Harrison et al conclude, “...modelled personal exposure is unable to reflect the variability of measured personal exposures occasioned by the spread of concentrations within given microenvironments”.

Both Cherrie and Harrison et al claim that microenvironmental sampling would be a good alternative for direct personal exposure measurements that supposedly are “costly and time consuming”. However, the costs for sampling microenvironments in a general population study will be far greater if we want to measure all the microenvironments people end up in (for instance, in table 1 seven environments are indicated, and most of them will most likely be different for each study participant). In addition, it will be practically impossible to measure some of these environments as the authors point out. In their study, it was not possible to collect data for all appropriate microenvironments, even for a comparatively small number of subjects.

Recently, a very insightful paper was presented at the X2001 conference in Gothenburg. Seixas and colleagues4 showed that in a study to assess occupational noise exposure, a task based methodology (analogous to microenvironmental sampling in environmental exposure assessment) could only account for 30% of variability in daily exposures. They even considered this estimate somewhat optimistic since their estimated noise exposures were derived from the same data on which the daily average exposures were estimated. In addition they clearly pointed out that using simple task based averages that artificially compress exposure variability resulted in a very substantial negative bias in the estimated daily exposure.

In our opinion, we should aim to collect personal exposure measurements when estimating exposure for epidemiological studies.
We agree that smaller and lighter sampling instruments will need to be developed, as was suggested by Cherrie in his editorial. Recent studies in both the occupational and environmental arenas have shown that study subjects capable of carrying out personal measurements (and by doing these so, cutting out all the costs of the technician). 11 In all these studies except one, far more than 100 personal measurements were generated, which shows that studies of this size are not exceptional as was suggested in the editorial by Cherrie.

The question raised by Cherrie, “How important is personal exposure assessment in the epidemiology of air pollutants?”, can only be answered with a firm “very important”, if we want to capture the full range of personal exposures experienced in the general environment.

Microenvironmental monitoring and consequent modelling based on diaries will not provide sufficient resolution and accuracy.

References

Will sewage workers with endotoxin related symptoms have the benefit of reduced lung cancer? Thorn and colleagues’ reported that sewage workers suffer from various symptoms which can be related to bacterial endotoxin (lipopolysaccharide) exposure. Other studies 12 have shown that some members of this occupational group are commonly exposed to endotoxin. However, there appears to be a large discrepancy in endotoxin exposure studies except one, far more than 100 personal measurements were generated, which shows that studies of this size are not exceptional as was suggested in the editorial by Cherrie.

A number of epidemiological, 13 experimental, 14 and clinical 15 studies have suggested that endotoxin is effective against cancer. A recent study by Lynch G, Bord BS, et al. 16 reported that there is a rapid blood response of total leucocytes, monocytes, and granulocytes within seven hours followed by a dramatic decline within 24 hours. These findings are supported by an investigation by O’Grady and colleagues 17 in humans, in which endotoxin was instilled into a lung segment; increased tumour necrosis factor (TNF) and interleukin 1 were found in the bronchoalveolar lavage fluid 2–6 hours afterwards. Cytokine levels returned to normal concentrations within 24–48 hours after treatment. An increase of TNF in lung fluids as a result of exposure to endotoxin and dust containing endotoxin has been reported by others conducting human investigations as well, 18 including the suggestion of a dose-response relation. 19 Thus, periodic exposure as would be experienced by those in sewage and dusty occupations may afford a continual or pulse stimulation of the immune system. Such stimulation may enhance production of antinecancer mediator factors and cells 20 that are suggested to be responsible for observed reduced lung cancer rates. 21

Experimental studies 22 have suggested that benefit of endotoxin exposure is most effective during initiation of lung cancer with a finding of less benefit for established tumours. This, together with results from Palmberg and colleagues, 23 supports the hypothesis 24 that endotoxin in an occupational setting is more effective against the early formation of lung cancer. This further suggests that endotoxin reduces the incidence of lung cancer by stimulating the immune system to guard against early lung cancer events.

Additional studies are warranted on the relation of endotoxin and reduced lung cancer rates. This relation has been suggested for textile and agricultural workers. 25 However, there is no reason to believe that it will not extend to other occupational groups exposed to endotoxin. Many have explained that the relation is not one of benefit, but rather methodology and bias, including differences in smoking rates. 26 However, this explanation is not supported by experimental and clinical investigations involving endotoxin. The major influence on lung cancer is tobacco use (smoking). Although smoking is identified as one of the reasons for lower than expected rates in some populations, some studies 27 have shown that smoking is not always an explainable factor or bias for reduced lung cancer. For example, Rapiti and colleagues 28 reported that the consumption of cigarettes and prevalence of smoking in a population of municipal waste workers was higher than the general population, but the incidence of cancer deaths (standardised mortality ratio) for lung cancer in this group was 0.55. Epidemiological studies need to include and report not only detrimental outcomes but also potentially beneficial associations.

J H Lange

Envirosafe Training and Consultants, Inc., PO Box 114022, Pittsburgh, PA 15239, USA; john.pam.lange@worldnet.att.net

G Mastrangelo

Department of Environmental Medicine and Public Health, Section of Occupational Health, University of Padova, Via Giustiniani, 2-35128 Padova, Italy

K W Thomulka

University of the Sciences in Philadelphia, 600 South 43rd Street, Philadelphia, PA 19104, USA

References

28 Meyer-Baron A, Seeber A. A meta-analysis for neurobehavioural results due to occupational lead exposure with blood lead concentrations <70 µg/100 ml. Arch Toxicol 2000;73:50–18.

References

Authors’ reply

We thank Drs Seeber and Meyer-Baron for their comments on our paper, and also Drs Schwartz, Stewart, and Hu for comments published in the September 2002 issue of OBM.

The following is our response to the specific criticisms made by Schwartz and colleagues:

1. “No evaluation of the quality of the evidence from available studies based on study design and analytical method.” Study quality assessment was the first task we completed. As discussed in our methods section, our quality criteria included evaluating pre-exposure status, use of blinding procedures, and adjustments for age, occupational exposures, alcohol consumption, smoking, and socioeconomic factors (income level, education, etc).
2. “Data were combined from poorly done studies with data from well done studies.” Table 1 shows that no study satisfied all of the above quality criteria. Schwartz et al did not provide criteria to distinguish a “poorly done” from a “well done” study. However, we conducted an additional analysis of the five relatively well designed studies that adjusted for age, education, and alcohol use (Baker and colleagues, Campara and colleagues, Chia and colleagues, Maidell and colleagues, and Williamson and Teo). These five allowed us to conduct a meta-analysis for only three studies. For the Santa Ana preferred hand test, the effect size changed from non-significant to negative to non-significant positive. For the Santa Ana non-preferred hand test, the result changed slightly towards the null and remained statistically non-significant. For the digit symbol test, the results from the null and remained statistically significant in the fixed effects model, but changed slightly towards the null and was no longer statistically significant in the random effects model.

3. “Inclusion of studies that did not control for age and education.” Schwartz et al do not provide evidence that age and education are the two most important predictors. Rather they argue that alcohol use or the presence of pre-existing neuropsychiatric conditions could also act as powerful confounders. The studies in our meta-analysis had a mean of 17 years of age, more than a third of studies only including studies that controlled for age and education, and more than a third of studies only including studies that controlled for mean blood lead level. Inclusion of studies that did not control for age, education, or mean blood lead level was based on reviewer’s decision. We used the same definition of exposure as the previously published meta-analysis by Meyer-Baron and Seебеer (less than 70 µg/dl) to find out if the results of our two studies were reproducible. The direct comparison of the two analyses in the discussion is important in explaining our position with regards to meta-analysis as a research technique. We agree that other approaches could also be informative. The statement “The authors conclude that blood lead levels, that are described as ‘moderate’ in one location in the manuscript and ‘low’ in another, are not associated with neurobehavioural test scores” misrepresents our conclusions listed on page 222 of our paper.

4. “Reliance on expert opinion rather than ‘only including studies that reported beta coefficients for the blood lead versus test score relation, or adjusting for mean blood lead levels in exposed and non-exposed groups’.” We used the same definition of exposure as the previously published meta-analysis by Meyer-Baron and Seeber (less than 70 µg/dl) to find out if the results of our two studies were reproducible. The direct comparison of the two analyses in the discussion is important in explaining our position with regards to meta-analysis as a research technique. We agree that other approaches could also be informative. The statement “The authors conclude that blood lead levels, that are described as ‘moderate’ in one location in the manuscript and ‘low’ in another, are not associated with neurobehavioural test scores” misrepresents our conclusions listed on page 222 of our paper.

5. “Reliance on expert opinions” rather than “only including studies that reported beta coefficients for the blood lead versus test score relation, or adjusting for mean blood lead levels in exposed and non-exposed groups.” We used the same definition of exposure as the previously published meta-analysis by Meyer-Baron and Seeber (less than 70 µg/dl) to find out if the results of our two studies were reproducible. The direct comparison of the two analyses in the discussion is important in explaining our position with regards to meta-analysis as a research technique. We agree that other approaches could also be informative. The statement “The authors conclude that blood lead levels, that are described as ‘moderate’ in one location in the manuscript and ‘low’ in another, are not associated with neurobehavioural test scores” misrepresents our conclusions listed on page 222 of our paper.

6. “Reliance on a small number of unspecific studies for effect estimates. Table 2 of the study reports the number of studies that were combined to derive effect estimates, but does not specify which studies were combined.” The original content of the paper included information on each individual study; however, based on the reviewers’ and editor’s comments, we had to shorten the manuscript substantially. We will make this information available online in the discussion to the purported omission from our meta-analysis of the May 2001 article by Schwartz and colleagues, this article was unavailable when our manuscript was submitted for publication in December 2000. The other two studies they cite did not meet our inclusion criteria. While we have not had an opportunity to evaluate the association between cumulative exposure to lead and neurobehavioural testing results, we did note that the
We have found inconsistent mental health results in our three recent studies examining the impact of aircraft noise on child health around Heathrow airport.11 In the West London Schools Study,18 aircraft noise was weakly associated with hyperactivity and psychological morbidity as measured by the Strengths and Difficulties Questionnaire (SDQ) completed by parents. The SDQ is one of the most widely used psychometrically valid screening instruments to detect psychological morbidity in children in both the UK and internationally. However, in our other two studies using both the parent-completed SDQ, the teacher completed Student Behaviour Checklist (CBCL), and self-reported Depression (Child Depression Inventory, CDI) and Anxiety (Revised Child Manifest Anxiety Scale) we did not find any association between mental ill health and aircraft noise exposure.

The Australian results should be placed within the context of existing studies with respect to two points: (1) the construct being measured in the Australian study; and (2) the small effect size and inconsistency with previous research.

In the Heathrow studies we used internationally recognised child mental health screening tools, that have equivalent psychometric properties to those used in the UK (only used in German speaking countries). It is worth noting that the KINDL is normally defined as a “valid and reliable index of quality of life”, rather than a sensitive screening tool to detect specific mental health problems. It is possible that the mental health results reported by Lercher and colleagues are tapping into impaired quality of life and wellbeing, rather than a precise mental health outcome such as “depression”. The definition of “mental health” used by the authors needs to be clarified. The fact that the Austrian results do not replicate our Heathrow results raises the question: Does the KINDL measure wellbeing and quality of life rather than mental health? Furthermore, teacher reports of classroom adjustment would not normally be classified as a “mental health” problem, and it might be more accurate to conclude from the Austrian research that: “ambient levels of noise in the community are associated with decreased quality of life and poorer classroom behaviour (rather than ‘mental health’) in elementary school children”.

In summary, we feel that new research is necessary to provide further evidence about the effects of noise on child mental health. Even though Lercher and colleagues have taken the field of research forward with their two stage study design strategy, there is still more work to be done to clarify the terminology and measurement of mental health in the field of non-auditory health effects of noise. Specifically, a clear definition and operational distinction needs to be made between stress/wellbeing/quality of life and mental health.

M Haines, S Stansfeld
Department of Psychiatry, Barts and the London Hospital, Queen Mary, University of London, London, UK
Correspondence to: Dr M Haines, PricewaterhouseCoopers, 201 Sussex Street, GPO Box 2650, Sydney, New South Wales 1171, Australia; m.haines@au.pwcglobal.com

References
some kind of adaptation might have occurred. This study was supported by Shiraz University
M Saadat
Department of Biology, College of Sciences, Shiraz University, Shiraz 71454, Iran; saadat@shusc.ac.ir

References

William Harvey and air pollution

Thomas Parr died, on 14 November 1635, at what was recorded as the advanced age of 152 years and 9 months. A postmortem examination was performed and a record made by William Harvey. A translation by Alan Muirhead of Harvey’s account is included in the Everyman edition of De Motu Cordis. Parr seemed remarkably well preserved, and when considering the cause of death, Harvey identified air pollution as a possible contributory factor. His words are worth reading:

“It was consistent to attribute the cause of death as suddenly adopted by a mode of living unnatural to him. [Parr had been brought to London not long before he died by Lord Arundel.] Especially did he suffer harm from the change of air, for all his life he had enjoyed absolutely clean, rarefied, coolish, and circulating air, and therefore his diaphragm and lungs could be inflated and deflated and refreshed more freely. But life in London in particular lacks this advantage—the more so because it is full of the filth of men, animals, sewers, and other forms of squaller, in addition to which there is the not inconsiderable grime from the smoke of sulphurous coal constantly used for fuel for fires. The air in London therefore is always heavy, and in autumn particularly so, especially to a man coming from the sunny and healthy districts of Shropshire, and it could not but be particularly harmful to one who was now an enfeebled old man.”

Harvey went on to point to the possible adverse effects of changing from a simple diet to a rich one. Harvey’s observation on the possible effects of air pollution are interesting in that they antedate Evelyn’s much better known analysis by 26 years. In retrospect we can see that Harvey identified the effects of short term exposure to high levels of air pollution on a vulnerable person.

R L Maynard
Department of Health, Skipton House, Elephant and Castle, London SE1 6HJ, UK; robert.maynard@doh.gsi.gov.uk

Reference
1 Harvey W. The circulation of the blood and other writings. Translated by Franklin KJ. Everyman’s Library, No. 262. 1963. ISBN 0 460 00262 7.

Alternative methods of administering amyl nitrite to victims of cyanide poisoning

The traditional method of administering amyl nitrite to a victim of cyanide poisoning, is to break an ampoule in a handkerchief and then intermittently hold this under the victim’s nose. I would like to suggest two alternative methods for administering amyl nitrite. The first method is to use a nebuliser. The second method is to use an inhaler similar to the Pentrox device, normally used to administer methoxyflurane for emergency anaesthesia. With appropriate training, either method could be used by first aid staff. This could be of particular value to remote mine sites where the absence of medical staff may preclude intravenous administration of cyanide antidotes such as dicobalt edetate, sodium thiosulphate, sodium nitrite, or hydroxocobalamin.

Both methods offer the following advantages over the traditional method:

• Oxygen can be administered during treatment
• Rapid delivery of the drug
• Accurate dose delivery
• Less risk of inhalation by first aid or medical staff
• Less risk of injury due to glass fragments.

The inhaler device would also be particularly well suited to the treatment of large numbers of victims following industrial disaster or terrorist attack—the risk of which has been recently alluded to.

One concern about introducing these methods is the potential for amyl nitrite toxicity. Experimental research is recommended to determine safe dosages and frequencies for each method.

A M Donoghue
School of Public Health, Queensland University of Technology, Victoria Park Road, Kelvin Grove, Brisbane QLD 4059, Australia; m.donoghue@qut.edu.au

References

Basic Statistics and Epidemiology, A Practical Guide

This book is “aimed at people who want to understand the main points, with minimum fuss”—no small task when the subject at hand is statistics! However, this book manages it by using short, concise, easy to read chapters that contain simple examples and a minimum of mathematics. The style is suitable both as a text to read from start to finish and as a reference book. It introduces students to the basic terms and concepts in statistics and epidemiology and provides a very basic “walk through” of some simple formulae.

The book is loosely divided into two parts. It begins with a brief description of what are statistics, their role in the study of populations, and ways in which samples can be drawn from populations in order to make statements about individuals in the population. Concepts such as probability, significance testing, and standard errors are introduced and explained before a very brief mention of some simple statistical tests. In these later chapters insufficient information is provided to allow the reader to understand the mechanism of these tests, or the conditions required for their application. However, useful references are given where the reader may find further details.

In the second “half” of the book the author covers basic epidemiological concepts, describing the difference between prevalence and incidence, and how to measure disease frequency, and discussing bias and confounding. Later chapters in this part cover basic study designs such as cohort, case-control, and randomised clinical trial (or RCT), and describe the planning and use of questionnaires.

The book provides a useful glossary of terms, including mathematical symbols and a number of statistical tables. A set of exercises is given and answers are provided. These are an invaluable addition to the book.

For the non-mathematical health student faced with the daunting prospect of having to begin studying statistics, this 150 page book is an excellent primer. It introduces basic terms and concepts and gets the student started. However, statistical concepts can be difficult to understand, and in some chapters in this book the brief introduction given falls short of helping the student to understand these concepts properly. Therefore the interested student may see this book as a first introductory text, shortly to be followed or indeed accompanied by a more full statistical or epidemiological textbook. For this purpose an excellent, current bibliography is provided.

R Atkinson

Occupational Disorders of the Lung: Recognition, Management and Prevention

The authors of this book aim to draw attention to “the changing nature of the contribution the occupational environment makes to lung disease, and to the particular difficulties this poses for those who find themselves responsible for patient care or the management of relevant industries”. The result is a book which is easy to read, helped greatly by use of a standard format for each chapter. The format includes management of both the individual and the workforce, and prevention. The authors have also used difficult or “grey” cases, similar to one other textbook in the field. This difference here is

www.occenvmed.com

Occup Environ Med: first published as 10.1136/oem.60.2.146-a on 1 February 2003. Downloaded from http://oem.bmj.com/ on June 8, 2022 by guest. Protected by copyright.
The editors’ aim—that is, of helping busy
safety officers, and administrators, and suc-
taneous scene. Boxes have been used for specific
works, but sometimes it does not. There are
or one or two boxes which run to four or five
boxes to supplement the generally good qual-
that were circulated to all the
absorb a large amount of information in a
response summarised in the text. The lack of
completeness in many instances is
Certainly stylish and on the whole achieves
Another attractive feature of this book is the
chapters dedicated to descriptions of
certain industries and the problems that arise
from these workplaces, including mining,
short final section. The atlas format is
being occupied by respiratory topics, with
grouped into six sections, the lion’s share
All of the material is up to date and well
referred, though tends to some extent to be
dominated by North American sources and
opinions. I found the chapters dealing with
lung cancer and bronchiolitis obliterans and other
bronchiolar airway disorders, and sarcoidosis
to be particularly useful and excellent sources of
in contrast the chapter dealing with intersti-
tial lung disease was to me a little disappoint-
ing. The chapters covering sleep disorders,
HIV and fungal infections, lower respiratory
tract infections, and nutrition are new to this
dition and are welcome additions. The use of
guided evidence based recommendations for
diagnostic and therapeutic interventions is
variable between chapters and its more
consistent application would add further to
this book’s already considerable value.
I am sure this atlas will have broad appeal
to both undergraduate and postgraduate stu-
dents of chest medicine as well as busy practi-
tioners. It would be a valuable aid to those
preparing for postgraduate exams as well as to
specialist registrars in respiratory medicine,
who I’m sure would find it a very useful
medicine less appealing. It has few competi-
tors in terms of its breadth and clarity and it
represents good value for money; in short it
deserves a place in all good medical libraries.

W S Tunnicliffe

Bone’s Atlas of Pulmonary and
Critical Care Medicine, 2nd
edition
Edited by G Douglas Campbell Jr and D Keith
Payne (pp 315 plus index and colour plates; $55) 2001. Hagerstown, MD: Lippincott
Williams & Wilkins. ISBN 0 7817 3436 3

This book aims to cover an enormous subject,
and the editors have done very well to contain
it to a little over 300 pages. Its 26 chapters are
grouped into six sections, the book is

Work related and environmental aspects of
respiratory and skin allergy
• Specific issues related to pathophysiology
and skin allergy
• Management and prevention of allergy

Irritant Contact Dermatitis Symposium
• Occupational irritant dermatitis
• Prevention of irritant dermatitis
• Alternative methods for the assessment of
irritants
• Irritant dermatitis from cosmetics

Satellite events
• Satellite Symposium, 9 July 2003
• Allergy School, 9–10 July 2003
• 7th International NIVA Course on Work-
Related Respiratory Hypersensitivity, 11–15
July 2003

The resolution of this conundrum may
seem unimportant to those who live in coun-
tries where past exposures have been to mix-
tures of amphiboles and chrysotile and where
use of asbestosis has effectively ceased. How-
ever, industry continues to need durable fibres
and the poor world sees substantial advan-
tages in using cheap asbestos cement for
water pipes and roofing material. And the
issue is of course important to the Canadian
and Russian chrysotile industries and their
employees. Anyone who has been involved in
the asbestos debate, who gives advice to
industry or lawyers on asbestos issues, or who
is interested in the complexities of the
interface between science and regulation will
find much of fascination in this volume.

A Seaton

First World Congress on
Work-Related and
Environmental Allergy (1st
WOREAL), and Fourth
International Symposium
on Irritant Contact Dermatitis (ICD),
Helsinki, Finland, 9–12 July
2003
Congress on Work-Related and
Environmental Allergy
• Work related and environmental aspects of
respiratory and skin allergy
• Specific issues related to pathophysiology
and skin allergy
• Management and prevention of allergy

Irritant Contact Dermatitis Symposium
• Occupational irritant dermatitis
• Prevention of irritant dermatitis
• Alternative methods for the assessment of
irritants
• Irritant dermatitis from cosmetics

Satellite events
• Satellite Symposium, 9 July 2003
• Allergy School, 9–10 July 2003
• 7th International NIVA Course on Work-
Related Respiratory Hypersensitivity, 11–15
July 2003

Congress Secretariat
Ms Kirsi Saarelma, Congress Manager
Pykkö & Saarelma Ltd
Limingantie 9
FIN-00550 Helsinki, Finland
Tel: +358 9 79 00 80
Fax: +358 9 757 36 30
Email: secretariat@woreal.org
Website: www.woreal.org
NIVA Training Programme 2003: Advanced Courses in Occupational Health and Safety

NIVA Training Programme 2003 offers 12 advanced courses on current themes of work life. Further information is available from the NIVA Office:

NIVA Nordic Institute for Advanced Training in Occupational Health
Topeliuksenkatu 41 a A
FIN-00250 Helsinki
Finland
Tel: +358 9 47 471
Fax: +358 9 4747 2497, +358 9 2414 634
Email: niva@ttl.fi
Website: www.niva.org

Assessment of Psychological Factors at Work
3–6 March 2003, Gello Hotel, Geilo, Norway

Evaluation and Good Occupational Health Practice
23–27 March 2003, The Fell Hotel, Saariselkä (Lapland), Finland

Principles of Etiologic/Etiodiagnostic Research
11–16 May 2003, Hanasaari Cultural Center, Espoo (Helsinki), Finland

Toxicokinetic and Toxicodynamic Modeling in Occupational Health
15–19 June 2003, Red Cross Educational Training Center, Gripsholm, Sweden

Work-related Respiratory Hypersensitivity
10–15 July 2003, Marina Congress Center, Helsinki South Harbour, and The Sunborn Yacht Hotel, Naantali, Finland

Bullying and Harassment at Work
11–15 August 2003, Hotel Eckerö, Åland, Finland

Good Management Practice—Interaction of Environment, Safety and Quality
31 August–4 September 2003, Hotel Levitunturi, Sirkka (Lapland), Finland

Workplace Health Promotion—Practice and Evaluation

Indoor Air Quality Problems—Link between Indoor Pollution, Psychological Factors and Complaints
22–26 September 2003, Vilvorde Course Center, Vilvorde (Copenhagen), Denmark

Occupational Health Risk Assessment and Management
6–10 October 2003, Medical Academy of Latvia, Riga, Latvia

Introduction to Occupational Epidemiology
23–29 October 2003, Hotel Gentofte (Copenhagen), Denmark

Work-related Musculoskeletal Disorders: Current Research Trends
1–7 November 2003, The Sunborn Yacht Hotel, Naantali, Finland

CORRECTIONS

The authors of “Association between job strain and prevalence of hypertension: a cross sectional analysis in a Japanese working population with a wide range of occupations: the Jichi Medical School Cohort Study” (Tsutsumi A, Kayaba K, Tsutsumi K, Igarashi M, Occup Environ Med 2001;58:367–7) have asked for the following errors to be pointed out.

• There are errors in the abstract (line 16) and text (page 368, left hand column, line 5). A part of the baseline data was collected in 1995 in two of the 12 study sites so that the correct period was 1992–95 (not 1992–94).
• On page 368, left hand column, line 24, the number of older participants (over 69) should be 696 and not 699.

These facts do not, however, affect the study findings.

We apologise for the following error in the book review, “Late lessons from early warnings: the Precautionary Principle 1896–2000” by R L Maynard. A copy of this book is available to download free of charge from EEA Online. The URL, however, was published incorrectly. The correct link is: http://reports.eea.eu.int/environmental_issue_report_2001_22/en.