This hobby requires inspiration and breathing of large volumes of air, making the lung alveoli expand more than in other people. This fact could facilitate the penetration of carcinogens in the cells of the lung epithelium, and this could be more harmful to smokers. We have found no other studies that have reported this possible association. It would therefore be necessary to explore this association in greater samples of professionally exposed persons. We are unable to determine whether this finding is consistent or due to chance.

A Ruano-Ravina, A Figueiras, J M Barros-Dios
Department of Preventive Medicine and Public Health, University of Santiago de Compostela, Spain
Correspondence to: Dr J M Barros-Dios, Department of Preventive Medicine and Public Health, University of Santiago de Compostela, C/ San Francisco s/n, Universidad de Santiago de Compostela, 15872 Santiago de Compostela, La Coruña, Spain; mrbarros@usc.es

References

How important is personal exposure assessment in the epidemiology of air pollutants?

The paper by Harrison and colleagues1 and the accompanying editorial by Cherrie1 in the October 2002 issue of Occupational and Environmental Medicine address the important issue of personal exposure assessment (of air pollutants) in environmental epidemiology. After reading both papers we would like to make some comments with regard to the design, conduct and statistical analysis of the study by Harrison et al and at the same time answer the question raised by Cherrie in his editorial.

Coming from the occupational exposure assessment arena it is interesting to see that our environmental colleagues are still relying to a large extent on static (microenvironmental) sampling and even on shadowing to represent personal exposure. The latter brought back memories of old occupational hygiene textbooks with pictures of technicians standing with a sampling probe in the room with the static sampler. However, Harrison et al conclude, “...modelled personal exposure is unable to reflect the variability of measured personal exposures occasioned by the spread of concentrations within given microenvironments”.

Both Cherrie and Harrison et al claim that microenvironmental sampling would be a good alternative for direct personal exposure measurements that supposedly are “costly, time consuming”. However, the costs for sampling microenvironments in a general population study will be far greater if we want to measure all the microenvironments people end up in (for instance, in table 1 seven environments are indicated, and most of them will most likely be different for each study participant). In addition, it will be practically impossible to measure some of these environments as the authors point out. In their study, it was not possible to collect data for all appropriate microenvironments, even for a comparatively small number of subjects.

Recently, a very insightful paper was presented at the X2001 conference in Gothenburg. Seixas and colleagues2 showed that in a study to assess occupational noise exposure, a task based methodology (analogous to microenvironmental sampling in environmental exposure assessment) could only account for 30% of variability in daily exposures. They even considered this estimate somewhat optimistic since their estimated noise exposures were derived from the same data on which the daily average exposures were estimated. In addition they clearly pointed out that using simple task based averages that artificially compress exposure variability resulted in a very substantial negative bias in the estimated daily exposure.

In our opinion, we should aim to collect personal exposure measurements when estimating exposure for epidemiological studies.
We agree that smaller and lighter sampling instruments will need to be developed, as suggested by Cherrie in his editorial. Recent studies in both the occupational and environmental arenas have shown that study subjects are capable of carrying out personal measurements, and (by doing these so, cutting out the costs of the technician).10 In all these studies except one,11 far more than 100 personal measurements were generated, which shows that studies of this size are not exceptional as was suggested in the editorial by Cherrie.

The question raised by Cherrie, “How important is personal exposure assessment in the epidemiology of air pollutants?” can only be answered with a firm “very important”, if we want to capture the full range of personal exposures experienced in the general environment. These measurements are very often given the relatively low concentrations in the general environment, we will need to measure these accurately. Micrometeorological monitoring and consequent modelling based on diaries will not provide sufficient resolution and accuracy.

We agree that smaller and lighter sampling instruments will need to be developed, as was originally reported for cotton textile workers. Other studies12–16 that reported on lung cancer mortality in various occupations support these findings as suggested by Rapiti and colleagues.17–19 Rylander20 and Lange21 previously reviewed the epidemiological literature on reduced cancer rates in various occupations that are exposed to endotoxin.

A number of epidemiological,14 experimental,15 16 and clinical22–24 studies have suggested that endotoxin is effective against cancer. A recent study by Palmberg and colleagues25 reported that there is a rapid blood response of total leucocytes, monocytes, and granulocytes within seven hours followed by a dramatic decline within 24 hours. These findings are supported by an investigation by O’Grady and colleagues26 in humans, in which endotoxin was instilled into a lung segment; increased tumour necrosis factor (TNF) and interleukin 1 were found in the bronchoalveolar lavage fluid 2–6 hours afterwards. Cytokine levels returned to normal concentrations within 24–48 hours after treatment. An increase of TNF in lung fluids as a result of exposure to endotoxin and dust containing endotoxin has been reported by others conducting human investigations as well,17,18 including the suggestion of a dose-response relation.19 Thus, periodic exposure as would be experienced by those in sewage and dusty occupations may afford a continual or pulse stimulation of the immune system. Such stimulation may enhance production of anticancer mediator factors and cells that are suggested to be responsible for observed reduced lung cancer rates.16

Experimental studies17 have suggested that benefit of endotoxin exposure is most effective during initiation of lung cancer with a finding of less benefit for established tumours. This, together with results from Palmberg and colleagues,17 supports the hypothesis18 that endotoxin in an occupational setting is more effective against the early formation of lung cancer. This further suggests that endotoxin reduces the incidence of lung cancer by stimulating the immune system to guard against early lung cancer events.

Additional studies29 are warranted on the relation of endotoxin and reduced lung cancer rates. This relation has been suggested for textile and agricultural workers.25 There is no reason to believe that it will not exist in other occupational groups exposed to endotoxin. Many have explained that the relation is not one of benefit, but rather methodology and bias, including differences in smoking rates.20 However, this explanation is not supported by experimental and clinical investigations involving endotoxin. The major influence on lung cancer is tobacco use (smoking). Although smoking is identified as one of the reasons for lower than expected rates in some populations, some studies15 have shown that smoking is not always an explainable factor or bias for reduced lung cancer. For example, Rapiti and colleagues22 reported that the consumption of cigarettes and prevalence of smoking in a population of municipal waste workers was higher than the general population, but the incidence of cancer deaths (standardised mortality ratio) for lung cancer in this group was 0.55. Epidemiological studies need to include and report not only detrimental outcomes but also potentially beneficial associations.

References

5 Kromhout H, Loomis DP, Mihlan GJ, et al. Assessment of occupational exposure to air pollutants. Environmental and Occupational Health Division, Institute for Risk Assessment Sciences, Utrecht University, PO Box 80176, 3508 TD Utrecht, Netherlands. H.Kromhout@iras.uu.nl
6 M van Tongeren Centre for Occupational and Environmental Health, School of Epidemiology and Health Sciences, University of Manchester, Manchester, UK

Will sewage workers with endotoxin related symptoms have the benefit of reduced lung cancer? Thorn and colleagues’ reported that sewage workers suffer from various symptoms which can be related to bacterial endotoxin (lipopolysaccharide) exposure. Other studies17 have shown that some members of this occupational group are commonly exposed to endotoxin. However, there appears to be a large discrepancy in endotoxin exposure among sewage workers (and by doing these so, cutting out the costs of the technician).10 In all these studies except one,11 far more than 100 personal measurements were generated, which shows that studies of this size are not exceptional as was suggested in the editorial by Cherrie.

The question raised by Cherrie, “How important is personal exposure assessment in the epidemiology of air pollutants?” can only be answered with a firm “very important”, if we want to capture the full range of personal exposures experienced in the general environment. These measurements are very often given the relatively low concentrations in the general environment, we will need to measure these accurately. Micrometeorological monitoring and consequent modelling based on diaries will not provide sufficient resolution and accuracy.

We agree that smaller and lighter sampling instruments will need to be developed, as was originally reported for cotton textile workers. Other studies12–16 that reported on lung cancer mortality in various occupations support these findings as suggested by Rapiti and colleagues.17–19 Rylander20 and Lange21 previously reviewed the epidemiological literature on reduced cancer rates in various occupations that are exposed to endotoxin.

A number of epidemiological,14 experimental,15 16 and clinical22–24 studies have suggested that endotoxin is effective against cancer. A recent study by Palmberg and colleagues25 reported that there is a rapid blood response of total leucocytes, monocytes, and granulocytes within seven hours followed by a dramatic decline within 24 hours. These findings are supported by an investigation by O’Grady and colleagues26 in humans, in which endotoxin was instilled into a lung segment; increased tumour necrosis factor (TNF) and interleukin 1 were found in the bronchoalveolar lavage fluid 2–6 hours afterwards. Cytokine levels returned to normal concentrations within 24–48 hours after treatment. An increase of TNF in lung fluids as a result of exposure to endotoxin and dust containing endotoxin has been reported by others conducting human investigations as well,17,18 including the suggestion of a dose-response relation.19 Thus, periodic exposure as would be experienced by those in sewage and dusty occupations may afford a continual or pulse stimulation of the immune system. Such stimulation may enhance production of anticancer mediator factors and cells that are suggested to be responsible for observed reduced lung cancer rates.16

Experimental studies17 have suggested that benefit of endotoxin exposure is most effective during initiation of lung cancer with a finding of less benefit for established tumours. This, together with results from Palmberg and colleagues,17 supports the hypothesis18 that endotoxin in an occupational setting is more effective against the early formation of lung cancer. This further suggests that endotoxin reduces the incidence of lung cancer by stimulating the immune system to guard against early lung cancer events.

Additional studies29 are warranted on the relation of endotoxin and reduced lung cancer rates. This relation has been suggested for textile and agricultural workers.25 There is no reason to believe that it will not exist in other occupational groups exposed to endotoxin. Many have explained that the relation is not one of benefit, but rather methodology and bias, including differences in smoking rates.20 However, this explanation is not supported by experimental and clinical investigations involving endotoxin. The major influence on lung cancer is tobacco use (smoking). Although smoking is identified as one of the reasons for lower than expected rates in some populations, some studies15 have shown that smoking is not always an explainable factor or bias for reduced lung cancer. For example, Rapiti and colleagues22 reported that the consumption of cigarettes and prevalence of smoking in a population of municipal waste workers was higher than the general population, but the incidence of cancer deaths (standardised mortality ratio) for lung cancer in this group was 0.55. Epidemiological studies need to include and report not only detrimental outcomes but also potentially beneficial associations.

J H Lange Envirosafe Training and Consultants, Inc., PO Box 114022, Pittsburgh, PA 15229, USA; john.p.lange@worldnet.att.net

G Mastrangelo Department of Environmental Medicine and Public Health, Section of Occupational Health, University of Padova, Via Giustiniani, 2-35128 Padova, Italy

K W Thomulka University of the Sciences in Philadelphia, 600 South 43rd Street, Philadelphia, PA 19104, USA

References

15 Schroeder JC, Tolbert PE, Eisen EA, et al. Mortality studies of machining fluid exposure in the automobile industry IV: a casecontrol
Neurobehavioural testing in workers occupationally exposed to lead

The article of Dr Goodman and coworkers on “Neurobehavioural testing in workers occupationally exposed to lead” covers an interesting approach with a surprising main message: “None of the individual studies is conclusive or adequate in providing information on the subclinical neurobehavioural effects...”. Such a sentence astonishes a reader since the studies for effect estimates. Table 2 of the study reports the number of studies that were combined to derive effect estimates, but does not specify which studies were included. “The original manuscript submitted to O&EM included information on each individual study; however, based on the reviewers’ and editor’s comments, we had to shorten the manuscript substantially. We will make this information available in the discussion important in explaining our position with regards to meta-analysis as a research technique. We agree that other approaches could also be informative. The statement “The authors conclude that lead blood levels, that are described as ‘moderate’ in one location in the manuscript and ‘low’ in another, are not associated with neurobehavioural test scores” misrepresents our conclusions listed on page 222 of our paper.

(6) “Reliance on expert’s views rather than on study data”

We thank Drs Seeger and Meyer-Baron for their comments on our paper, and also Drs Schwartz, Stewart, and Hu for comments published in the September 2002 issue of O&EM.

The following is our response to the specific criticisms made by Schwartz and colleagues:

(1) “No evaluation of the quality of the evidence from available studies based on study design and analytical method.” Study quality assessment was the first task we completed. As discussed in our methods section, our quality criteria included evaluating pre-exposure status, use of blinding procedures, and adjustments for age, occupational exposures, alcohol consumption, and socioeconomic factors (income level, education, etc.).

(2) “Data were combined from poorly done studies with data from well done studies.” Table 1 shows that no study satisfied all of the above quality criteria. Schwartz et al did not provide criteria to distinguish a “poorly done” from a “well done” study. However, we conducted an additional analysis of our studies included information on each individual study; however, based on the reviewers’ and editor’s comments, we had to shorten the manuscript substantially. We will make this information available in the discussion important in explaining our position with regards to meta-analysis as a research technique. We agree that other approaches could also be informative. The statement “The authors conclude that lead blood levels, that are described as ‘moderate’ in one location in the manuscript and ‘low’ in another, are not associated with neurobehavioural test scores” misrepresents our conclusions listed on page 222 of our paper.

(6) “Reliance on expert’s views rather than on study data”

The following is our response to the specific criticisms made by Schwartz and colleagues:

(1) “No evaluation of the quality of the evidence from available studies based on study design and analytical method.” Study quality assessment was the first task we completed. As discussed in our methods section, our quality criteria included evaluating pre-exposure status, use of blinding procedures, and adjustments for age, occupational exposures, alcohol consumption, and socioeconomic factors (income level, education, etc.).

(2) “Data were combined from poorly done studies with data from well done studies.” Table 1 shows that no study satisfied all of the above quality criteria. Schwartz et al did not provide
2001 article by Schwartz and colleagues' found no association between tibia lead levels and test scores.

With regard to Seeber and Meyer-Baron's statements that "the repeated information on cross-sectional studies should also be accepted as source for conclusions on (neurobehavioural) effects due to exposures" and that "meta-analyses are one approach to search such summarising information", after having reviewed the results of five meta-analyses on the subject (two presented in the recent article by Seeber and colleagues, their paper, and the two additional re-analyses discussed here), we found five different sets of results with no evidence of conclusions to qualify these results as "repeated". Therefore, we have to adhere to our original conclusions.

M. Goodman, N. LaVerda, C. Clarke, E. Foster, J. Iannuzzi, J. Mandel
Exponent Health Group, 310 Montgomery Street, Alexandria, VA 22314, USA; mgoodman@exponent.com

References

Ambient neighbourhood noise and children's mental health

Readers may be interested to know that there are other studies that have provided equivocal evidence concerning the effects of environmental noise on children's mental health that have not been cited in the article by Lercher et al, published in the June 2002 issue of Occupational and Environmental Medicine. These new results need to be considered in the light of fact there has not been clear research evidence to support or dispute whether noise exposure in linked to mental health problems in children.

We have found inconsistent mental health results in our three recent studies examining the impact of aircraft noise on child health around Heathrow airport.10 In the West London Schools Study, aircraft noise was weakly associated with hyperactivity and psychological morbidity as measured by the Strengths and Difficulties Questionnaire (SDQ) completed by parents.

The SDQ is one of the most widely used psychometrically valid instruments to detect psychological morbidity in children in both the UK and internationally. However, in our other two studies using both the parent completed SDQ, the teacher completed Student Behaviour Checklist (SBC) and children self reported Depression (Child Depression Inventory, CDI) and Anxiety (Revised Child Manifest Anxiety Scale) we did not find any association between mental ill health and aircraft noise exposure.

The Austrian results should be placed within the context of existing studies with respect to two points: (1) the construct being measured in the Austrian study; and (2) the small effect size and inconsistency with previous research.

In the Heathrow studies we used internationally recognised child mental health screening tools, that have equivalent psychometric properties (only used in German speaking countries). It is worth noting that the KINDL is normally defined as a “valid and reliable index of quality of life”, rather than a sensitive screening tool to detect specific mental health problems. It is possible that the mental health results reported by Lercher and colleagues are tapping into impaired quality of life and wellbeing, rather than a precise mental health condition such as “depression”. The definition of “mental health” used by the authors needs to be clarified. The fact that the Austrian results do not replicate our Heathrow results raises the question: Does the KINDL measure wellbeing and quality of life rather than mental health? Furthermore, teacher reports of classroom adjustment would not normally be classified as a “mental health” problem it might be more accurate to conclude from the Austrian research that: “ambient levels of noise in the community are associated with decreased quality of life and poorer classroom behaviour (rather than “mental health”) in elementary school children”.

In summary, we feel that new research is necessary to provide further evidence about the effects of noise on child mental health. Even though Lercher and colleagues have taken the field of research forward with their two stage study design strategy, there is still more work to be done to clarify the terminology and measurement of mental health in the field of non-auditory effects of noise.

Specifically, a clear definitional and operational distinction needs to be made between stress/wellbeing/quality of life and mental health.

M. Haines, S. Stansfeld
Department of Psychiatry, Barts and the London Hospital, Queen Mary, University of London, London, UK
Correspondence to: Dr M Haines, Prince William House, Queen Square, London WC1N 3BG, UK

No change in sex ratio in Ramsar (north of Iran) with high background of radiation

A few areas of the world show high levels of natural radiation, and one of these areas is located in Iran. Ramsar is a northern coastal town situated in the Caspian littoral (in Mazandaran province, Iran) on the slopes of the Alborz mountain range, and bordered on its eastern side by forests. It is situated at 49° 40’ eastern longitude and 36° 53’ northern latitude. The area is rich with mineral springs. Investigations into the amount of radium-226 in water started more than 30 years ago.1 It has been reported that inhabitants of Ramsar receive an annual radiation absorbed dose from background radiation that is up to 260 mSv, considerably higher than the 150 mSv that is permitted for radiation workers.2

Annual births subdivided by gender, were obtained from Statistical Center of Mazandaran province. Because of the relatively small number of annual births in the urban area of Ramsar (currently about 670 per annum), analysis was carried out on the 11 year total for male and female live births, for the period 20 March 1989 to 19 March 2001, equal to Iranian calendar 1368 to 1379 Hijriar (HS). The data was not available for the 1378 HS (equal to 20 March 1999 to 19 March 2000).

To test the null hypothesis that the probability of a male live birth in Ramsar is equal to that in the control populations, a χ² test was conducted. A value of p < 0.05 was considered significant. The sex ratio is expressed as the proportion of total live births that were males.

The sex ratios at birth in the urban area of Tonekabon, the nearest city to Ramsar (about 20 km distance) and the urban areas of Mazandaran province (excluding Ramsar) were used as controls. The overall sex ratios in Ramsar, Tonekabon, and the urban areas of Mazandaran province were 0.511 (total live births = 7911), 0.517 (total live births = 14 266), and 0.509 (total live births = 253 918), respectively. There was no significant difference between Ramsar and either Tonekabon (χ² = 0.95, df = 1, p = 0.33) or urban areas of Mazandaran province (χ² = 0.13, df = 1, p = 0.71).

It has been reported that the sex ratio in the offspring of male radiologists is significantly lower than that in control populations.3 However, this is not consistent with the present result. This discrepancy could be attributed to the exposure of both parents to ionising radiation. Alternatively, because the inhabitants of Ramsar have lived for many generations in an area of high background radiation, www.occenvmed.com
some kind of adaptation might have occurred. This study was supported by Shiraz University

M Saadat
Department of Biology, College of Sciences, Shiraz University, Shiraz 71454, Iran;
saadat@shusc.ac.ir

References

William Harvey and air pollution
Thomas Parr died, on 14 November 1635, at what was recorded as the advanced age of 152 years and 9 months. A postmortem examination was performed and a record made by William Harvey. A translation by Alan Muirhead of Harvey’s account is included in the Everyman edition of De Motu Cordis. 1 Parr seemed remarkably well preserved, and when considering the cause of death, Harvey identified air pollution as a possible contributory factor. His words are worth reading:

“It was consistent to attribute the cause of death to a sudden adoption of a mode of living unnatural to him. [Parr had been brought to London not long before he died by Lord Arundel.] Especially did he suffer harm from the change of air, for all his life he had enjoyed absolutely clean, rarefied, coolish, and circulating air, and therefore his diaphragm and lungs could be inflated and deflated and refreshed more freely. But life in London in particular lacks this advantage—the more so because it is full of the filth of men, animals, sewers, and other forms of squalor, in addition to which there is the not inconsiderable grime from the smoke of sulphurous coal constantly used in London for fires. The air in London therefore is always heavy, and in autumn particularly so, especially to a man coming from the sunny and healthy districts of Shropshire, and it could not but be particularly harmful to one who was now an enfeebled old man.”

Harvey went on to point to the possible adverse effects of changing from a simple diet to a rich one. Harvey’s observation on the possible effects of air pollution are interesting in that they antedate Evelyn’s much better known analysis by 26 years. In retrospect we can see that Harvey identified the effects of short term exposure to high levels of air pollution on a vulnerable person.

R L Maynard
Department of Health, Skipton House, Elephant and Castle, London SE 1 6HJ, UK; rob.maynard@doh.gsi.gov.uk

Reference
1 Harvey W. The circulation of the blood and other writings. Translated by Franklin KJ. Everyman’s Library, No. 262. 1963. ISBN 0 460 00262 7.

Alternative methods of administering amyl nitrite to victims of cyanide poisoning
The traditional method of administering amyl nitrite to a victim of cyanide poisoning, is to break an ampoule in a handkerchief and then intermittently hold this under the victim’s nose. 2, 3

I would like to suggest two alternative methods for administering amyl nitrite. The first method is to use a nebuliser. The second method is to use an inhaler similar to the Penthrox device, normally used to administer methoxyflurane for emergency analgesia.

With appropriate training, either method could be used by first aid staff. This could be of particular value to remote mine sites where the absence of medical staff may preclude intravenous administration of cyanide antidotes such as dicyclohexedate, sodium thiosulphate, sodium nitrite, or hydroxocobalamin.

Both methods offer the following advantages over the traditional method:

• Oxygen can be administered during treatment
• Rapid delivery of the drug
• Accurate dose delivery
• Less risk of inhalation by first aid or medical staff
• Less risk of injury due to glass fragments.

The inhaler device would also be particularly well suited to the treatment of large numbers of victims following industrial disaster or terrorist attack—the risk of which has been recently alluded to. 4

One concern about introducing these methods is the potential for amyl nitrite toxicity. Experimental research is recommended to determine safe dosages and methods for each method.

A M Donoghue
School of Public Health, Queensland University of Technology, Victoria Park Road, Kelvin Grove, Brisbane QLD 4059, Australia; m.donoghue@qut.edu.au

References

Basic Statistics and Epidemiology: A Practical Guide

This book is “aimed at people who want to understand the main points, with minimum fuss”—no small task when the subject at hand is statistics! However, this book manages it by using short, concise, easy to read chapters that contain simple examples and a minimum of mathematics. The style is suitable both as a text to read from start to finish and as a reference book. It introduces students to the basic terms and concepts in statistics and epidemiology and provides a very basic “walk through” of some simple formulae.

The book is loosely divided into two parts. It begins with a brief description of what are statistics, their role in the study of populations, and ways in which samples can be drawn from populations in order to make statements about individuals in the population. Concepts such as probability, significance testing, and standard errors are introduced and explained before a very brief mention of some simple statistical tests. In these later chapters insufficient information is provided to allow the reader to understand the mechanism of these tests, or the conditions required for their application. However, useful references are given where the reader may find further details.

In the second “half” of the book the author covers basic epidemiological concepts, describing the difference between prevalence and incidence, and how to measure disease frequency, and discussing bias and confounding. Later chapters in this part include an overview of basic study designs such as cohort, case-control, and randomised clinical trial (or RCT), and describe the planning and use of questionnaires.

The book provides a useful glossary of terms, including mathematical symbols and a number of statistical tables. A set of exercises is given and answers are provided. These are an invaluable addition to the book.

For the non-mathematical health student faced with the daunting prospect of having to begin studying statistics, this 150 page book is an excellent primer. It introduces basic terms and concepts and gets the student started. However, statistical concepts can be difficult to understand, and in some chapters in this book the brief introduction given falls short of helping the student develop the concepts properly. Therefore the interested student may see this book as a first introductory text, shortly to be followed by or indeed accompanied by a more full statistical or epidemiological textbook. For this purpose it is excellent, current bibliography is provided.

R Atkinson

Occupational Disorders of the Lung: Recognition, Management and Prevention

The authors of this book aim to draw attention to “the changing nature of the contribution the occupational environment makes to lung disease, and to the particular difficulties this poses for those who find themselves responsible for patient care or the management of relevant industries”. The result is a book which is easy to read, helped greatly by use of a standard format for each chapter. The format includes management of both the individual and the workforce, and prevention. The authors have also used difficult or “grey” cases, similar to one other textbook in the field. The difference here is

www.occenvmed.com
that the cases were circulated to all the contributors to this volume and the overall response summarised in the text. The lack of complete agreement in many instances is comforting at one level—“textbook” cases are the exceptions in practice—and this approach gives a far better feel for the real life situation.

Another attractive feature of this book is the chapters dedicated to descriptions of certain industries and the problems that arise from those workplaces, including mining, farming, the automotive industry, and health carers among the seven chapters. This does lead to repetition of some information between chapters but, as the authors rightly point out, this will tend to dip into one particular part of the book, and repetition under these circumstances is helpful rather than an irritation. The chapters on specific disciplines used in the investigation and management of occupational lung disease (for example, imaging and occupational hygiene) are good and sufficient for most needs in this context. The chapters on legislation divided geographically into North America, Western Europe, and the Pacific, Far East, and Australasia is an excellent attempt to widen the relevance of the book.

My criticisms are few and minor. While there are good generic sections on how to take and present an occupational history and on exposure history and surveillance, it might have been a useful addition to include a chapter on epidemiological aspects unrelated to surveillance and more to the research field. This would allow greater expansion on the healthy worker effect and perhaps also the opportunity to compare the now burgeoning literature on the health effects of the broader environment and how these findings might apply to the occupational scene. Boxes have been used for specific sections within chapters. Sometimes this works, but sometimes it does not. There are one or two boxes which run to four or five pages and I feel that these would quite happily sit as sections within the chapter rather than boxes. Boxes need to be short and punchy.

This book is an excellent addition to the literature in this area, complimenting nicely the classical standard textbooks, and at a penny under £100 is good value for money. It is targeted at all physicians, hygienists, health and safety officers, and administrators, and successfully hits that target for all these groups. For exam purposes (for example, AFOM in the UK) this should be regarded as the standard text.

J G Ayres

Bone’s Atlas of Pulmonary and Critical Care Medicine, 2nd edition

Edited by G Douglas Campbell Jr and D Keith Payne (pp 315 plus index and colour plates; £55) 2001, Haggerston, MD: Lippincott Williams & Wilkins. ISBN 0 7817 3436 3

This book aims to cover an enormous subject, and the editors have done very well to contain it to a little over 300 pages. Its 26 chapters are grouped into six sections, the seven chapters being occupied by respiratory topics, with critical care being limited to the relatively short final section. The atlas format is certainly stylish and on the whole achieves the editors’ aim—that is, of helping busy clinicians and students of chest disease absorb a large amount of information in a relatively short amount of time.

Despite the numerous contributors, the book’s layout is uniform and very accessible; text is limited and punchy and extensive use has been made of diagrams, flow charts, and tables to supplement the generally good quality photographic images. The grouping of the colour plates to the final pages of the book, to contain printing costs, is a little distracting but a justifiable compromise.

All of the material is up to date and well referenced, though tends to some extent to be dominated by North American sources and opinion. I found the chapters dealing with lung cancer, bronchiolitis obliterans and other bronchiolar airway disorders, and sarcoidosis to be particularly useful and excellent sources of a large and diverse amount of information. In contrast the chapter dealing with interstitial lung disease was to me a little disappointing. The chapters covering sleep disorders, HIV and fungal infections, lower respiratory tract infections, and nutrition are new to this edition and are welcome additions. The use of boxed evidence based recommendations and diagnostic and therapeutic interventions is variable between chapters and its more consistent application would add further to this book’s already considerable value.

I am sure this book will have broad appeal to both undergraduate and postgraduate students of chest medicine as well as busy practitioners. It would be a valuable aid to those preparing for postgraduate exams as well as to specialist registrars in respiratory medicine, who I’m sure would find it a very useful source throughout their trainee years. Intensivists and trainees in critical care will, I expect, find the balance towards respiratory medicine less appealing. It has few competitors in terms of its breadth and clarity and it represents good value for money; in short it deserves a place in all good medical libraries.

W S Tunnicliffe

The Health Effects of Chrysotile Asbestos


The famous mortality study led by Corbett McDonald has followed 11 000 Canadian chrysotile miners and millers until 80% were dead; only 33 mesotheliomas were reported and excess lung cancers occurred only at very high exposure levels. Yet that same chrysotile used in textile manufacture in South Carolina was associated with a 30 times greater lung cancer mortality.

This volume, published in 2001 by The Canadian Mineralogist, reports the papers presented and the ensuing discussion and commentary at a symposium in 1997 called by the Canadian Government to discuss the health issues surrounding the continued production and use of chrysotile asbestos. Can the mineral be used safely? To most unformed observers, the answer must be a clear no. The true answer is of course not so cut. Much of the evidence suggests that chrysotile itself is much less hazardous than the amphiboles and that the serious risks associated with chrysotile are a consequence of its contamination by tremolite, an amphibole that is found in geological intrusions into the chrysotile ore body. These are the issues discussed by the distinguished geologists, mineralogists, epidemiologists, risk analysts, and pathologists who contributed to the symposium. Among them are the last published contributions of two who made great contributions over many decades to investigating the hazards of asbestos and to protecting workers, the late Chris Wagner and Bob Murray.

The resolution of this conundrum may seem unimportant to those who live in countries where past exposures have been to mixtures of amphiboles and chrysotile and where use of asbestoses has effectively ceased. However, industry continues to need durable fibres and the poor world sees substantial advantages in using cheap asbestos cement for water pipes and roofing material. And the issue is of course important to the Canadian and Russian chrysotile industries and their employees. Anyone who has been involved in the asbestos debate, who gives advice to industry or lawyers on asbestos issues, or who is interested in the complexities of the interface between science and regulation will find much of fascination in this volume.

A Seaton
NIVA Training Programme 2003: Advanced Courses in Occupational Health and Safety

NIVA Training Programme 2003 offers 12 advanced courses on current themes of work life. Further information is available from the NIVA Office:

NIVA Nordic Institute for Advanced Training in Occupational Health
Topeliuksenkatu 41 a A
FIN-00250 Helsinki
Finland
Tel: +358 9 4747 1
Fax: +358 9 4747 2497, +358 9 2414 634
Email: niva@ttl.fi
Website: www.niva.org

Assessment of Psychological Factors at Work
3–6 March 2003, Geilo Hotel, Geilo, Norway

Evaluation and Good Occupational Health Practice
23–27 March 2003, The Fell Hotel, Saariselkä (Lapland), Finland

Principles of Etiologic/Etiodiagnostic Research
11–16 May 2003, Hanasaari Cultural Center, Espoo (Helsinki), Finland

Toxicokinetic and Toxicodynamic Modeling in Occupational Health
15–19 June 2003, Red Cross Educational Training Center, Gripsholm, Sweden

Work-related Respiratory Hypersensitivity
10–15 July 2003, Marina Congress Center, Helsinki South Harbour, and The Sunborn Yacht Hotel, Naantali, Finland

Bullying and Harassment at Work
11–15 August 2003, Hotel Eckerö, Åland, Finland

Good Management Practice—Interaction of Environment, Safety and Quality
31 August–4 September 2003, Hotel Levitunturi, Sirkka (Lapland), Finland

Workplace Health Promotion—Practice and Evaluation

Indoor Air Quality Problems—Link between Indoor Pollution, Psychological Factors and Complaints
22–26 September 2003, Vilvorde Course Center, Vilvorde (Copenhagen), Denmark

Occupational Health Risk Assessment and Management
6–10 October 2003, Medical Academy of Latvia, Riga, Latvia

Introduction to Occupational Epidemiology
23–29 October 2003, Hotel Gentofte (Copenhagen), Denmark

Work-related Musculoskeletal Disorders: Current Research Trends
1–7 November 2003, The Sunborn Yacht Hotel, Naantali, Finland

CORRECTIONS

The authors of “Association between job strain and prevalence of hypertension: a cross sectional analysis in a Japanese working population with a wide range of occupations: the Jichi Medical School Cohort Study” (Tsutsumi A, Kayaba K, Tsutsumi K, Igarashi M, Occup Environ Med 2001;58:367–7) have asked for the following errors to be pointed out.

- There are errors in the abstract (line 16) and text (page 368, left hand column, line 5). A part of the baseline data was collected in 1995 in two of the 12 study sites so that the correct period was 1992–95 (not 1992–94).
- On page 368, left hand column, line 24, the number of older participants (over 69) should be 696 and not 699.

These facts do not, however, affect the study findings.

We apologise for the following error in the book review, “Late lessons from early warnings: the Precautionary Principle 1896–2000” by R. L. Maynard. A copy of this book is available to download free of charge from EEA Online. The URL, however, was published incorrectly. The correct link is: http://reports.eea.eu.int/environmental_issue_report_2001_22/en.