The silica carcinogenicity issue in Japan

In the opinion of this writer, the recent action by the Japanese government amending relevant laws designating lung cancer as a compensatable complication of pneumoconiosis is a big step towards improvement. Pneumoconiosis victims who develop lung cancer will be compensated under the national compensation plan. In Japan, there are currently an estimated 12,000 pneumoconiotics officially recognised as "administrative level (AL) 2 or 3," meaning the number of compensated cases to less than 30 per year. With the inclusion of lung cancer as one of the six designated complications of pneumoconiosis, compensation coverage is extended to essentially all pneumoconiotics (AL 2 or higher), with entitlement to additional benefits. Prior to the amendment, compensation was restricted to lung cancer cases complicating pneumoconiosis of only AL 4 (and AL 3, 2, or 1), limiting the number of compensated cases to less than 30 per year. With the inclusion of lung cancer as one of the six designated complications of pneumoconiosis, compensation coverage is extended to essentially all pneumoconiotics (AL 2 or higher), with entitlement to additional benefits, for example, surviving family members' pension, if a pneumoconiotic develops lung cancer and dies of it. The amendment thereupon provides additional benefits for non-silicotics and silicotics (eight studies); it is 1.32 weighted pooled risk = 1.32; 95% CI 1.24 to 1.39; (2) lung cancer risk among dust exposed workers shown separately for non-silicotics and silicotics (eight studies); it is 1.32 weighted pooled risk = 3.71; 95% CI 3.45 to 3.99. It was thus deduced that lung cancer risk is slightly increased among dust exposed workers, but not among non-pneumoconiotics, whereas lung cancer risk is apparent among pneumoconiotics (which could not be explained by bias or smoking). Further, combined with the aforementioned negative assertion on animal and mutagenicity studies, the Committee drew the conclusion that "there is no evidence to support the carcinogenicity of silica itself," and "further findings are needed for judgment".

The most serious problem with the reasoning behind the amendment is the reliance on eight epidemiological studies showing lung cancer risk separately for non-silicotics and silicotics. It is obvious that few of these studies were designed to specifically address the issue of dissociating risks between non-silicotics and silicotics, with the notable exception of the study by Checkoway and colleagues, in which lung cancer risk was detected in relation to cumulative exposure among non-silicotics. In the remaining studies where such data were lacking, most authors acknowledged the possibility that the exposure profile of subjects was represented by the status of fibrosis, so the presence/absence of silicosis should be regarded as a marker of high/low cumulative exposure. The argument that silicosis is, but silica itself is not, a risk factor for lung cancer cannot be advanced from a pooled risk calculated for the non-silicotics in these studies. Furthermore, such arguments tend to understate the fact that the distinction between the presence/absence of fibrosis is arbitrary because fibrosis occurring at microscopic levels often escapes radiographical detection. The fairly limited scope of the available epidemiological literature warrants that the silica carcinogenicity issue be treated in perspective, combining findings from the entire spectrum of silica exposed subjects, including non-silicotics and silicotics. The rebuttal of the animal and mutagenicity studies as failing to provide evidence of silica carcinogenicity only lessens the scientific credibility of the Committee's argument. Finally, I reiterate that significant progress has been made administratively in Japan to provide improved opportunities for follow up of pneumoconiotic victims and better compensation if and when they develop lung cancer. Needless to say, such action falls into the realm of secondary and tertiary prevention. Further steps should be taken to reevaluate silica carcinogenicity and incorporate it into administrative measures aimed at primary prevention.

K Takahashi
Department of Environmental Epidemiology, University of Occupational and Environmental Health, Ori, Yatahanishiku, Kitakyushu City 807-8555, Japan. ktakah@med.uoeh-u.ac.jp

References

www.occenvmed.com

34. Hnizdo E, Muray J, Klempon S.

Direct Access to Medline

Link to Medline from the homepage and get straight into the National Library of Medicine’s premier bibliographic database. Medline allows you to search across 9 million records of bibliographic citations and author abstracts from approximately 3,900 current biomedical journals.

www.occenvmed.com