Health risks from exposure to cadmium in soil

We were intrigued by the report and findings from Elliott et al. of overall mortality, cancer incidence, and stroke mortality in Shipham village. Their findings are similar to the conclusions we reported in 1982 after work funded by the Department of Health and Social Security. We noted that “the failure to demonstrate any excess morbidity requiring hospital admission is reassuring for Shipham residents”. We identified a small but significant excess of carcinoma of the ovary but thought it extremely unlikely that this could be explained by exposure to cadmium; the histology of the two reported neoplasms was different and one of the patients resided at an address with a normal soil cadmium content. Moreover, the soil cadmium concentrations of cadmium in essential benign hypertension, hypertensive heart disease, acute nephritis, other nephritis and nephrosis, and calcification of the urinary system, or from gastric cancer which had in North Somerset been associated with similar patterns of contamination of the soil with heavy metal. These findings are not explored by Elliott et al. Although they explore biomarkers of blood and urine, they do not discuss the worth of in vivo neutron activation analysis or dental studies. Yet in 1979, it was reported that the mean (SD) liver cadmium concentrations of 21 Shipham residents was 11.0 (2.0) ppm, which was significantly higher than that of 10 non-Control cadmium controls (2.2 (2.0) ppm). These researchers also reported values of up to 260 ppm in industrially exposed workers, and that neither the workers nor the Shipham residents showed any evidence of cadmium toxicity. These findings were considered reassuring. The dental health of Shipham children was reported to be similar to children in neighbouring villages without the soil contamination, although increased concentrations of cadmium had been found in their teeth. One other background study of the villagers, also not cited by Elliott et al. do not see felt to be aware of this background or of the findings from earlier studies. Such an introduction would have helped to set the context of their own study.

The earlier publications also helped to make the study of Elliott et al. possible by reporting the huge time costs needed for manual record linkage. For example, they reported that “the postcode of residence was used to identify cases from the death and mortality databases, held by the United Kingdom Small Area Health Statistics Unit (SAHSU). Back in 1976, the need for record linkage was discussed. Our study of Shipham residents “was, in part, a response to the challenge that further interest should be stimulated in the use of Hospital Activity Analysis data” (HAA). We also reported that “for HAA purposes addresses of patients are coded by local authority district Health professionals, however, are often restricted to much smaller geographical areas. Before we could calculate standardised admission ratios for Shipham, 451 hours of clerical work were required to identify the 201 records returned to the study for Shipham residents”. At that time the need to produce statistics for small areas had been recognised and the then Office of Population, Censuses and Surveys was introducing a postcode system for vital statistics in England and Wales. Posting of hospital patient data and record linkage followed in the late 1980s. Elliott et al. were able to use these developments.

We thought that public health fears generated for this population had been allayed by studies reported in the 1980s for their sources of exposure, dietary intake of cadmium, body burden of cadmium, morbidity, and mortality experience. What Elliott et al. now report is further evidence from longitudinal studies. The worth of such follow up studies is considerably weakened by knowledge that on average, 10% of the population move house each year, and difficulties estimating total body burden.

We think that much can be learned from the experience of studies involving this population. In particular, any such long term follow up study is required to be sensitive to their public health needs. As Elliott et al. and ourselves have noted, the methodological problems associated with interpreting findings from the use of routinely available data are considerable. It is therefore important for researchers, with the ready availability of powerful, computer based literature searching facilities and library held compendia—such as the Index Medicus—to be able to reassure readers that they have considered all the relevant background information and that their findings are being fully discussed in the context of other published work. Questions the informed reader will ask include: has a comprehensive review of the body of knowledge been undertaken? Has all the evidence been considered and is it coherent? Are there anomalies and can they be explained? What fresh insights has the study yielded? And what are the implications for the future? In this instance we are left asking why was this recent study undertaken and what has it added to existing knowledge? Or, in other words, why has this soil been turned over again? It should be recalled that in 1979, as a consequence of the news media scare and without any public health evidence, property values in the village dropped to half their market value. They took years to recover. Accordingly, we need to remind ourselves that we have a duty of care in planning research to ensure that our efforts to better understand environmental and occupational health problems are intended for the public good.

ROBIN PHILIPP
ANTHONY HUGHES
Centre for Health in Employment and the Environment, Department of Occupational Medicine, Bristol Royal Infirmary, Bristol BS2 8HW UK

Correspondence to: Dr R Philipp

5 Harvey TC, Chettle DR, Freemire PR, et al. Cadmium in Shipham in Small Area Health Statistics Unit (SAHSU).
6 Hughes EG, Stewart M. Cadmium toxicity. Lancet 1979;i:328–33.
14 Fry JA, Dunsford VW. Small Area Health Statistics Unit (SAHSU) studies, and found that analyses with such data are far from straightforward. It is doubtful that analysis of health outcomes—such as benign hypertension or calculus of the urinary system—would give any meaningful result, as most cases will not be admitted to hospital. We did not analyse incidence of gastric cancer, as there is no evidence that cadmium is a risk factor for this cancer.
15 Philipp and Hughes state that we “explored blood and urinary markers”, whereas we noted that “biological data (cadmium in blood or urine) were not available for use in the present investigation”. We saw no reason to “discuss the worth of in vivo neutron activation analysis”, because such methods are not particularly useful for exposure assessment in epidemiological studies. We are fully aware of the historical background, which we described in the introduction to our paper, including a reference to the Wolfson geochemical atlas. We also referred to the original cohort analysis by Inskipp et al., and several papers from the community.
Non-neoplastic mortality of European workers who produce man made mineral fibres

Editor—The recent publication by Sali et al reports "a suggestion of an increasing risk of death from non-malignant renal diseases" among rock and slag workers with employment in the early technological phase. No such relation was found for glass wool workers. The 1985 follow up of the man made mineral fibre worker (MIMMF) study in the United States reported a significant increase in mortality for nephritis and nephrosis based on 56 deaths for the entire male cohort. Sali et al concluded that additional studies are warranted. We should like to point out that an additional study of glass wool workers published earlier in this Journal dealing with nephritis or nephrosis.

The Division of Occupational Health Studies, Department of Family Medicine, Georgetown University Medical Center maintains a mortality surveillance system (MSS) on behalf of Owens Corning (OC). The MSS includes biennial detailed exposure information and the results of an interview survey which provides information on socio-demographic factors including education, marital status, income, drinking, and smoking.

We used a case-control study with cases and controls derived from the MSS to investigate the question of whether there is an association between exposure to respirable glass fibre or silica and mortality from nephritis or nephrosis among workers in fibrous glass wool manufacturing facilities.

Two case-control analyses were carried out, one where the cases were defined with nephritis or nephrosis as the underlying cause and one where cases were defined as those where nephritis or nephrosis is either the underlying or a contributing cause of death.

We found no consistent relation for respirable fibres or respirable silica when the analysis was based either on underlying cause only or on underlying plus contributing cause. None of the sociodemographic variables considered suggests an increased risk when considering both underlying and contributing cause. For these data, all odds ratios for respirable fibres and silica based on both underlying and contributing cause of death are below unity with the exception of the highest exposure level for silica, which is 1.04. Although these results do not prove that there is no association between nephritis or nephrosis and exposure to fibreglass or silica in the fibreglass manufacturing environment, they do not support the assertion that such an association exists.

Leonard Chiazzere Jr
Deborah K Watkins
Cheryl Fryar
William Fayerweather
Georgetown University Medical Center, Department of Family Medicine, Division of Occupational Health Studies, 4001 Koger Center Hall, 7500 Roosevelt Road NW, Washington DC 20007, USA

Correspondence to: Dr P Elliott

Correspondence to: Dr L Chiazzare Jr


4 Thornton I. Content of soils and dust. In: Morgan H, ed. The MSS includes biennial detailed exposure information and the results of an interview survey which provides information on socio-demographic factors including education, marital status, income, drinking, and smoking.


2nd International Conference on Whole Body Vibration Injuries. November 7–9, 2000, Siena, Italy.

The vibration experienced by some vehicle and machine operators has long been suspected to be a cause of injuries. There are, now, guidelines, standards, and proposed legislation intended to protect workers from excessive exposure to whole body vibration and mechanical shock. Seating standards seek to protect the worker from direct mechanical shock to the body. This multidisciplinary conference will provide a unique opportunity to exchange information on the potential for injury from whole body vibration and mechanical shock.

This conference will specially emphasise preventative measures and the promotion of the transfer of knowledge from the laboratory to the field.

The official language of the conference will be English.

The programme will include submitted papers, posters, exhibitors, and discussion sessions.

Studies to be presented may involve:

- Epidemiology
- Physiological measurements
- Pathological investigations
- Biodynamic measurements
- Models and analogues
- Measurements of exposures
- Seating dynamics
- Other preventative measures
- Guidelines and standards
- Compensation and legal implications
- Review papers

Conference secretary: Studio Socrate, Viale Pescia 6, 52045 Fiorenza della Chiana, Arezzo, Italy. Phone 0039 0575 649099; fax 0039 0575 642728; socrates@alitalia.it

Patron: Paolo Boffetta Unit of Environmental Cancer Epidemiology, International Agency for Research on Cancer, 150 Cours Albert-Thomson, 6932 Lyon Cedex 08, France

Rodolfo Saracci Unit of Nutrition and Cancer

Correspondence to: Dr P Boffetta

Notice

The availability of a further 18 years of mortality data since the publication of the paper by Inskip and another one of us (MQ) was closely involved in the original Shipham study, and we commented on this in relation to the "geographical" study. Our study was not intended to be a "comprehensive risk assessment"; we do, however, refer to one. The availability of a further 18 years of mortality data since the publication of this paper is welcome and makes legitimation for updating their analysis. Cancer incidence data had not previously been analysed. We agree with Philipp and Hughes, that our paper most likely is reassuring to the local population, which should be for the public good.

P ELLIOTT
M QUINN
JARUP

Small Area Health Statistics Unit, Imperial College School of Medicine, Norfolk Place, London W2 1PG, UK

Environmental Geochemistry Research Group, T H Huxley School of the Environment, Earth Sciences and Engineering, Imperial College, London, UK

Correspondence to: Dr P Elliott


Boffetta and Saracci reply—Our conclusions were based on our finding on rock or slag wool workers, not on glass wool workers, a group comparable with the one studied by Chiazzare et al. Indeed, we reported that we found no relation between mortality from non-malignant renal diseases and employment in glass wool production. Given that the other large study of rock or slag wool workers resulted in an increased risk from nephritis and nephrosis, we think that our pledge for additional data on possible nephrotoxicity of rock or slag wool fibres was justified.

PAOLO BOFFETTA
Unit of Environmental Cancer Epidemiology, International Agency for Research on Cancer, 150 Cours Albert-Thomson, 6932 Lyon Cedex 08, France

RODOLFO SARACCI
Unit of Nutrition and Cancer

Correspondence to: Dr P Boffetta

http://www.iarc.fr