Mortality of workers exposed to methylene chloride employed at a plant producing cellulose triacetate film base

EDITOR—Tomenson et al reported results from a cohort study of men exposed to methylene chloride in the manufacture of cellulose triacetate film base. One of the findings in the study was four observed deaths from brain and other central nervous system (CNS) tumours compared with 2.8 expected cases based on national mortality rates. This is an interesting finding, as Heineman et al previously reported an association between methylene chloride and brain cancer in a case-control study of men from southern Louisiana and northern New Jersey who had died. However, Tomenson et al did not consider this finding as two of their cases had “minimal exposure to methylene chloride”. They furthermore argued that “no support for an association between methylene chloride and brain cancer was provided by the other three retrospective cohort studies”. However, only one of the three studies that they referred to reported data on brain cancer. Hearne et al found two observed deaths from brain cancer compared with 1.7 expected based on reference rates from New York State, excluding New York City, and 2.0 expected based on interval rates from Kodak, Rochester. Brain cancer data were not reported in the study by Lanes et al and Gibbs et al. The four other available cohort studies that included workers exposed to methylene chloride also did not report data on brain cancer.

It would have been prudent for Tomenson et al to bring to the attention of the reader the lack of data on the association between methylene chloride and brain cancer. Support is different from not reported!

ELESBETH LYNGE
Danish Cancer Society, Institute of Cancer Epidemiology, Strandboulevarden 49, DK-2100 Copenhagen, Denmark

Authors’ reply—Lyngé is correct to point out that Gibbs et al and Lanes et al did not report brain cancer mortality in two cohorts of United States cellulose triacetate fibre workers in Cumberland, Maryland, and Rock Hill, South Carolina. At the time of writing our paper, the report by Gibbs et al had not been published. However, we had access to a more detailed report of the mortality experience of workers at the Cumberland facility. For comparison purposes, Gibbs’ also reports some mortality findings for workers at the Rock Hill factory. When the paper of Gibbs et al was published, we removed the reference to the unpublished report. Unfortunately we overlooked the fact that the published paper did not include the brain cancer findings which we now give.

Gibbs et al and Gibbs’ reported mortality results for workers in two groups exposed to methylene chloride. Among workers in the high exposed group (350–700 ppm) there was one death from cancer of the central nervous system (CNS) (2.01 expected) in the low exposure group (50–100 ppm). Exposure levels of workers in the Rock Hill cohort studied by Lanes et al, were similar to those of workers in the Cumberland cohort, but it was not possible to separate them into exposure categories. There was one death from cancer of the CNS (1.52 expected) in the Rock Hill workers. Hence these studies do not provide support for an association between methylene chloride and brain cancer. However, we apologise for not ensuring that readers had access to the relevant data.

When discussing the supporting evidence for an association between brain cancer and exposure to methylene chloride, we focused on the information provided by the four cohorts of workers producing cellulose triacetate fibres or film base. These workers had high and well characterised exposure to methylene chloride compared with workers in the four other cohort studies cited by Lyngé, which did not report brain cancer mortality, but they have limited relevance to an assessment of the human health effects of exposure to methylene chloride.

JOHN A TOMESÓN
SUSAN M BONNER
ICI Epidemiology Unit, Northwich, Cheshire, CW8 4DJ, UK

COLIN G HEINÉ
DAVID G FARRAR
ICI Chemicals and Polymers, Runcorn, Cheshire, WA7 4QH, UK

TREVOR F CUMMINGS
ICI Chemicals and Polymers, Middlesbrough, TS99 8YA, UK

Inhalation of ammonium nitrate fuel oil explosive: and possible concomitant exposure

Author’s reply—Sostrand has suggested that the nitrogen dioxide component of diesel engine exhaust fumes may have caused the symptoms detailed in the case of ammonium nitrate fuel oil explosive (ANFO) inhalation that I reported recently.

This is unlikely for the following reasons:

• Symptom onset after inhalation of the ANFO plume was immediate
• At the time of the ANFO inhalation the miner was charging a face at ground level and the diesel powered platform truck had been switched off for about 1 hour
• There were no other diesel units operating in the area
• Three other miners in the same area who were not exposed to the ANFO plume were unaffected
• The affected miner had regularly worked in very similar conditions for 9 years without symptoms.

Sostrand has correctly indicated that diesel fuel is commonly used in ANFO. As I indicated in my previous report either the hydrocarbon solvent fuel oil, or the ammonium nitrate, or possibly both of these components of ANFO, may have caused the symptoms described.

A MICHAEL DONOHUE
The Medical Centre, Mount Isa Mines Limited, Mount Isa, Queensland 4825, Australia

CORRECTION


The cumulative dust exposure measurements given in this paper were in units of g/m³ and not in mg/m³—y as incorrectly stated. The cumulative dust exposure in g/m³ units was calculated as a sum of products between the number of shifts spent in an occupational category, the average number of hours worked underground in the occupational category, and the average respirable dust concentration (mg/m³) for the occupational category. To convert the cumulative dust from g/m³ into mg/m³ one needs to multiply the average


exposure of 14.3 given in the paper by 1000 and divide by (270^8) to obtain 6.6 mg/m^3.
We are grateful to Professor HJ Woitowitz from the Institute of Work and Social Medicine in Giessen, Germany, for pointing out this error.

NOTICES

International Course of Molecular Epidemiology. 19-24 April 1999. Villa Gualino, Torino, Italy.

The Institute for Scientific Interchange Foundation, the International Agency for research on cancer, the University of Torino, the Centre for Oncologic Prevention, and the Italian Molecular Epidemiology Group are running this course.

Keynote lectures
- Current perspectives in cancer research and prevention
- The aetiology of common diseases and their pathogenetic pathways

Session 1—molecular dosimetry: techniques and methods
- DNA adducts and protein adducts
- From adduction to DNA damage

Session 2—genetic susceptibility
- high and low penetrance cancer genes
- metabolic polymorphisms
- DNA repair

Session 3—epidemiological methods
- Study design: transitional and formal studies
- Case-control, cohort studies
- Bias, confounding, and effect modification

Session 4—DAN damage
- Acquired mutations and mutational spectra
- Cytogenetic damage

Session 5—statistical analysis
- Exploratory data analysis
- Univariate analysis
- Multivariate analysis

Session 6—issues in molecular epidemiology
- Ethical aspects
- Combined evidence, meta-analysis
- Causality assessment

Course directors: P Vineis (Torino), P Boffetta (Lyon). Faculty (provisional list): N Rothman (Bethesda), M Berwick (New York), D Phillips (Sutton), M Ingelman-Sundberg (Stockholm), P Real (Barcelona), P Hainaut (Lyon), R Montesano (Lyon)

Keynote speakers: P Kleihues (Lyon), P Perera (New York)

No registration fee is required. The ISI Foundation has reserved single rooms for participants from April 18 to 24 at Villa Gualino. The full board package is ITL. 780.000. Deadline for registration: 28, February 1999

For information contact: ISI Secretariat, Villa Gualino, Viale Settimio Severo 65, Torino, Italy. Tel 0039 11 6603090, fax 0039 11 6600049; email: isi@isi36a.isi.it - www.isi.it


The ICOH together with the Occupational Health and Rehabilitation Institute in Israel is organising the EPICOH 14th International Conference on Epidemiology in Occupational Health.

The main topics of the conference are:
- Occupational work related diseases
- Occupational cancer
- Occupational epidemiology
- Molecular epidemiology
- Biological markers
- Value of pre-employment examinations
- Exposure assessment
- Reproductive health studies
- Communicable diseases

For information contact: Dr Judith Shaham, Occupational Health and Rehabilitation Institute, PO Box 3, Ra’anana, Israel. Tel 00 972 9 771 0092; fax 00 972 9 771 2212; email judiths@trendline.co.il


The 9th international conference on the combined effects of environmental factors will take place in Savonlinna, in the beautiful eastern lake area of Finland. The conference is organised under the auspices of the International Society of Complex Environmental Studies (ISCES) in cooperation with national and international research institutes and universities.

The ICCEF 2000 invites all scientists who are interested in basic or applied studies related to complex interactions and combined effects of physical, chemical, psychosocial, and biological environmental factors on human health and wellbeing, or on biological systems. Contributions cover the following main subject areas Complex Environmental Studies, Combination Epidemiology, Combination Toxicology, Combined Mutagens, Genotoxins, Carcinogens and Teratogens, Combined Environmental and Psychosocial Factors, Psychophysiological Studies on Combined Environmental Factors, Methodological Issues and Computer Simulation as well as Modelling. The programme will include introductory lectures, oral and poster presentations. The working language of the Conference is English.

Further details from: Dr Olavi Manninen, The International ISCES Society, c/o Labour Protection Department, PO Box 272, FIN-33101 Tampere, Finland. Tel 00358 3 260 8820; fax 00358 3 2608899; email: Olavi.Manninen@tp.stm.vn.fi

For information contact: Dr Judith Shaham, Occupational Health and Rehabilitation Institute, PO Box 3, Ra’anana, Israel. Tel 00 972 9 771 0092; fax 00 972 9 771 2212; email judiths@trendline.co.il