Bioreactivity of carbon black and diesel exhaust particles to primary Clara and type II epithelial cell cultures

S A M Murphy, K A BéruBé, R J Richards

Abstract

Objectives—To begin to elucidate the mechanisms of particle toxicity to the lung, the bioreactivity of four carbon black (CB) and diesel exhaust particles (DEPs), a surrogate for particulate matter of aerodynamic diameter <10 μm (PM₁₀), were examined with primary cultures of Clara and type II epithelial cells. Methods—The particles were extensively characterised by surface chemistry, size, and aggregation properties. Toxicity of the particles was assessed by determining cell attachment to an extracellular matrix substrate.

Results—The spherulite size range for the particles ranged from 50, 40, 20, 20, and 30 nm for CB1–4 and DEPs. All particle samples had different surface chemical compositions. CB1 was the least toxic to Clara (170 μg) and type II cells (150 μg) and CB4 was the most toxic (55 μg and 23 μg respectively). DEPs stored for 2 weeks were equally toxic to both epithelial cell types (27–28 μg). DEPs became progressively less toxic to type II cells with time of storage. Both primary epithelial cell types internalised the particles in culture.

Conclusions—Bioreactivity was found to be related to CB particle spherulite size and hence surface area: the smaller the particle and larger the surface area, the more toxic the particles. Also, CB particles with the most complicated surface chemistry were the most bioreactive. Freshly prepared DEPs were equally toxic to type II and Clara cells and they became progressively less toxic to the type II cells with time. With all CB and DEPs, the primary epithelial cells internalised the particles, although this was noted most in cells of low functional competence.

Keywords: primary epithelial cultures; ultrafine particles; Clara cells; type II cells

Airborne particulate matter, often referred to as PM₁₀ (particulate matter of aerodynamic diameter <10 μm) has been linked to an increase in mortality, morbidity, and hospital attendance, particularly for those with lung or cardiovascular disorders. However, the reasons why small increases (μg/m³) in particles should produce health effects or exactly how they react in the lung remain unexplained. One possibility is that many particles are ultrafine (<100 nm) and if they do not aggregate they provide a large surface area for biological reaction. Such small particles may penetrate deeply into the lung and also readily translocate across the respiratory epithelium. Another suggestion is that the reactive surface properties of the particles, with a complex array of metal moieties and organic compounds, may produce changes in the protective lining fluids or airway surface epithelium leading to oxidative stress.

Within the United Kingdom, it has been estimated that 20%–80% of the primary PM₁₀ emissions can be attributed to diesel exhaust particles (DEPs) and in some urban areas such as London, DEPs can account for as much as 87% of the mass of PM₁₀ emissions. Diesel exhaust particles consist of individual spherical carbonaceous particles (spherulites) which readily aggregate into chains and clusters (spherules) according to their surface properties. Each individual particle has a turbostratic core covered by a more structured outer layer in which inorganic and organic elements may be concentrated. Within the core there is a graphitic misfit, permitting entrapment of further inorganic elements. Thus, although DEPs may represent a simplified surrogate for United Kingdom PM₁₀ and are more readily collected in sufficient quantities for toxicity studies, they still represent a complex physicochemical mixture. Furthermore, differences in aggregation and chemical properties may be linked to mode of collection, engine fuel type, running speed, and environmental aging of the sample. Carbon black (CB) has a similar, but somewhat simpler, graphitic structure than DEPs. Several forms of CB, variant in individual particle size and surface chemistry, are commercially available.

In this study four samples of CB with different spherulite sizes and surface properties were examined, alongside DEPs, for their potential toxicity in a simple in vitro system with primary isolates of rodent lung epithelial cells. Previous whole animal studies have established that Clara cells of the small airways and type 2 cells of the lung parenchyma are affected by inhaled DEPs. Thus, primary isolates of Clara cells from mice and type 2 cells from rats were chosen for the present study with particles, based on successful early differential toxicity investigations with xenobiotics. Toxicity was measured by attachment efficiency of primary cells to an extracellular matrix in the presence and absence of different doses (by mass) of CB and DEPs. The DEPs were stored for different
periods of up to 48 weeks after collection. Further studies with stained preparations, phase contrast, or confocal microscopy, were carried out to determine the proportion and functional status of cells carrying out endocytosis of the particles or aggregates. It was anticipated that by studying a variety of particles, clues to their mechanism of action or the importance of their size, surface area, or chemistry in toxicity reactions would emerge.

Materials and methods

MATERIALS AND ANIMALS

Synthetic, cell culture maintenance media (DCCM1), 96 well culture plates coated with extracellular matrix (ECM) and 24 well coverslips coated with ECM were obtained from Biological Industries (Beit Haemek, Israel). Ultroser G (serum substitute) and antibiotics were purchased from Gibco BRL (UK) and DNase 1 from Boehringer Mannheim (UK). Crystalline trypsin (T-8003), Percoll, and all other reagents were obtained from Sigma (UK). Male Sprague Dawley, CD rats (200–250 g) and male CD mice (35–40 g) were obtained from Charles River (UK). The animals were acclimatised for 1 week in a conventional holding unit before cell isolation.

COLLECTION AND CHARACTERISATION OF PARTICLES

Diluted diesel exhaust particles (DEPs) were collected from a tractor engine exhaust burning Esso 2000 diesel fuel and 20/30 light engine oil through a total suspended particulate inlet head onto 55 mm Millipore DA filters as described previously. Discs containing DEPs were wetted by sonicating in ultrapure water and processed in an identical manner. Carbon black samples were sonicated in ultrapure water and processed in an identical manner.

PARTICLE PREPARATION FOR ADDITION TO CELL CULTURES

A known weight of DEPs on a collection filter was wetted by immersion in DCCM1 in a wide bottomed sterile container placed in an iced sonicating water bath to disaggregate the sam-
Table 2 Mass (µg) of carbon black or DEP required to produce TD$_{50}$ values (mean (SD)) in Clara or type 2 cell cultures

<table>
<thead>
<tr>
<th></th>
<th>CB1 (n=10)</th>
<th>CB2 (n=8)</th>
<th>CB3 (n=8)</th>
<th>CB4 (n=8)</th>
<th>DEP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clara cells</td>
<td>170 (17)</td>
<td>112 (11)</td>
<td>46 (9)</td>
<td>55 (2)</td>
<td>76 (32) (n=2)</td>
</tr>
<tr>
<td>Type 2 cells</td>
<td>150 (15)</td>
<td>115 (5)</td>
<td>45 (4)</td>
<td>23 (6)*</td>
<td>48 (20) (n=15)</td>
</tr>
</tbody>
</table>

*p<0.05 from Clara cell cultures. n=Number of experiments.

Table 3 TD$_{50}$ values (mean (SD)) of different DEPs and storage for different periods after collection

<table>
<thead>
<tr>
<th>TD$_{50}$ values (µg)</th>
<th>DEP 1 (n=2)</th>
<th>DEP 2 (n=3)</th>
<th>DEP 3 (n=2)</th>
<th>DEP 4 (n=2)</th>
<th>DEP 4 (n=3)</th>
<th>DEP 4 (n=3)</th>
<th>All DEP (n=16)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Storage time after collection (weeks)</td>
<td>48 (9)</td>
<td>55 (9)</td>
<td>90 (9)</td>
<td>90 (9)</td>
<td>65 (9)</td>
<td>70 (9)</td>
<td>2-48</td>
</tr>
<tr>
<td>Type 2 cells</td>
<td>30 (2)</td>
<td>50 (2)</td>
<td>102 (1)</td>
<td>102 (1)</td>
<td>80 (5)</td>
<td>80 (5)</td>
<td>2-48</td>
</tr>
<tr>
<td>Clara cells</td>
<td>16 (9)</td>
<td>40 (5)</td>
<td>53 (9)</td>
<td>53 (9)</td>
<td>Nd</td>
<td>Nd</td>
<td>70 (30)</td>
</tr>
</tbody>
</table>

*p<0.05 From DEP 4 at 2 or 3 weeks storage. Results from 2/3 separate isolations with exposure to 5 concentrations of dust in triplicate wells. Nd=Not determined; n=number of experiments.
that all samples had a similar morphology and could form aggregations from the primary spherulites (individual particles, fig 1). The spherulites varied in mean diameter from 50, 40, 20, 20, and 30 nm for CB 1–4 and DEPs, respectively (table 1). Further breakdown into ultrafine (<100 nm), fine (0.1–2.5 µm) and coarse (>2.5 µm) categories showed that most particles in all the samples were fine. However, both CB3 and CB4 had higher ultrafine and coarse components than CB1 and CB2. The small ultrafine component may have a substantial influence on the surface area reported from nitrogen absorption (data supplied by Cabot Industries), which was especially high in CB3 and CB4. The surface area of the DEPs is unknown but may be greater than any of the carbon black samples because 10% by number of the DEPs were ultrafine and only a small proportion (0.4%) were coarse. Electron probe x ray microanalysis (EPXMA) for surface elements present on the particles indicated that slight, but subtle, differences existed between all the samples. The least complicated surface chemistry was found with CB1, a transition metal (iron) was detected on CB2 and DEPs showed a more complex array of elements than CB3 or CB4.

TOXICITY STUDIES WITH EPITHELIAL CELLS

The results from a single toxicity experiment exposing Clara cells to five different concentrations of each of CB1 and CB4 are shown in figure 2. From this type of experiment the TD$_{50}$ value for CB1 (150 µg) was about three times higher than that for CB4 (50 µg). This experiment was repeated on several occasions with primary isolates of both Clara and type 2 cells for which the collective data are shown in table 2. Both cell types responded to the different dusts in a similar manner with the exception of a significant difference between cell types for CB4. CB1 showed the lowest toxicity with CB3/4 having the highest reactivity and CB2 was intermediate in effect. The TD$_{50}$ values derived collectively from DEPs indicated that it had an intermediate toxicity between CB3 or CB4 and CB2 but with a much larger standard deviation from the mean value. The toxicity of the individual samples of DEPs together with details of their storage times before use is shown in table 3. In general, samples of DEPs became less toxic after prolonged storage. For one sample of DEPs (DEPs 4), the particles proved significantly less toxic after 19 weeks storage than after 2 or 3 weeks (table 3). The freshest DEP sample (2 weeks storage) had a similar TD$_{50}$ value for type 2 cells to that found with CB4.

INTERNALISATION OF PARTICLES

Light micrographs of type 2 cells (phase contrast) and Clara cells (stained for NADPH reductase) exposed to different concentrations of CB1 are shown in figure 3. Exhaustive washing of the cultures removed free particles leaving those that were strongly attached or internalised by the cells. At the level of light microscopy many type 2 cells seemed devoid of particles whereas others seemed to be packed with CB1 encircling the nuclear area. With
Clara cells, a similar observation was made and from micrographs it seemed that the cells most likely to contain particles were those with low or zero staining reaction for NADPH reductase activity. Further confirmation that particles had been taken in by Clara cells (and type 2 cell cultures, data not shown) was obtained with confocal microscopy (fig 4). From serial sections with dual monitoring for reflected light and fluorescent detection of FITC Phalloidin (to visualise actin) a composite micrograph was obtained to show the presence of intracellular CB1 particles. With this method it was also shown that Clara cells of low NADPH dependent reductase activity contained many more particles. A semiquantitative evaluation by light microscope was therefore carried out on Clara cell cultures treated with CB1 and CB4 to find the proportion of cells with zero or weak NADPH reductase activity and the number containing particles (fig 5). For CB1, the proportion of cells containing particles showed a close correlation with those that had little or no reductase activity. The CB4, which is more toxic than CB1, had a similar relation for dust concentrations of \(\leq 100 \mu g \). At the highest CB4 dose (250 \(\mu g \)), when all the surviving Clara cells had lost functional reductase activity, then some 80% of these cells retained intracellular particles.

Discussion

The biological reactivity of different samples of carbonaceous particles was compared with a simple in vitro system with primary lung epithelial cells. Differential toxicity was noted with CB samples and the results were reproducible with several primary isolates. The lowest biological reactivity in vitro was found with CB1 and the same sample produced no inflammation or lung permeability when instilled into rats in small doses.\(^{15}\)

Toxicity, in vitro, based on \(TD_{50} \) values, decreased proportionately with increased mean spherulite diameter. This suggests that the smaller the size of the individual particle, the greater the toxicity. However, spherulites or individual particles are rare in aqueous suspension but exist as aggregates. Each of the carbonaceous aggregates used has a slightly
with different primary isolates and CB samples. It seems unlikely that size distributions produce equivalent toxicity after prolonged storage. It is not known whether any of the carbonaceous particles used in this study prevent cell attachment by damaging plasma membranes or after endocytosis of the particles. Both phase contrast and confocal microscopy were used to detect aggregates of CB and DEPs being taken into both Clara and type 2 cells. There are no reports of endocytosis by Clara cells in vivo but alveolar epithelial cells have been reported to ingest asbestos fibres, cationic ferritin, and small amounts of dextran, but not colloidal carbon (25 nm particles), polystyrene beads (1 μm), or iron oxide (1 μm). In the present in vitro study, CB and DEPs are internalised by both epithelial cell types and in vivo uptake has been reported in bronchial epithelial cell populations after DEP inhalation studies. In vitro, where overload masses of particles are reacted with small numbers of cells the endocytotic process may be easily observed whereas cellular ingestion in vivo of small instilled masses may be more difficult to detect from electron microscopical analysis.

Some 50% of Clara cells contained particles and these cells had low NADPH dependent reductase activity, indicating that they have a compromised biotransformation potential. Increasing concentrations of CB4 particles reduced reductase activity in Clara cells and this again was associated with increase in particle uptake. It may be surmised that older or more differentiated cells, lacking functional activity, are more susceptible to ingesting particles. Alternatively, the particles themselves may reduce reductase activity.

In conclusion, respirable CB samples of varying physicochemical properties and DEPs, stored for different times after collection, show differential toxicity to primary lung epithelial cells. The particles are internalised by the cells in vitro and possibly preferentially by those of low functional activity. Individual particle size, available surface area, aggregation properties, and surface chemistry are all important in the observed toxicity but the predominant characteristics still require elucidation. In view of the variation in response to CB and DEPs stored for different times after collection it is recommended that particles for experimental studies should be well characterised before use.

We are grateful to the Medical Research Council, UK for financing this study.

Vancouver style

All manuscripts submitted to *Occup Environ Med* should conform to the uniform requirements for manuscripts submitted to biomedical journals (known as the Vancouver style.). *Occup Environ Med*, together with many other international biomedical journals, has agreed to accept articles prepared in accordance with the Vancouver style. The style (described in full in the *JAMA* [1]) is intended to standardise requirements for authors, and is the same as in this issue.

References should be numbered consecutively in the order in which they are first mentioned in the text by Arabic numerals on the line in square brackets on each occasion the reference is cited (Manson [1] confirmed other reports [2][3][4][5]). In future references to papers submitted to *Occup Environ Med* should include: the names of all authors if there are three or less, or if there are more, the first three followed by et al; the title of journal articles or book chapters; the titles of journals abbreviated according to the style of *Index Medicus*; and the first and final page numbers of the article or chapter. Titles not in *Index Medicus* should be given in full.

Examples of common forms of references are:
