CORRESPONDENCE

Measurement of vitamin D, metabolites in smelter workers exposed to lead and cadmium

We note with interest the paper of Chalkley et al. on the measurement of vitamin D metabolites in smelter workers, where they suggest that exposure to both cadmium (Cd) and lead (Pb) increased the concentration of 1,25 dihydroxyvitamin D. We also reported a significant association between blood Pb concentrations and serum 1,25 dihydroxyvitamin D in Pb workers. However, our subjects were not occupationally exposed to Cd and in vivo measurements of tidal Pb, as an index of cumulative exposure, were also made. Our data suggested that the increase in 1,25 dihydroxyvitamin D was associated with blood Pb, reflecting recent or current exposure rather than tidal Pb, and that the relation was not significant in those subjects with blood Pb >60 µg/dL. Our study found no effect on serum calcium, phosphate, or parathyroid hormone concentrations.

We think that it is important to highlight the difference between this Pb induced renal effect in adults and the reported opposite effect in children, and the reported opposite effect between this Pb induced renal effect in adults and the reported opposite effect in children, and the reported opposite effect in children, which, in fact, made a significant contribution to the appearance of the renal reference range used in the study. It is important to note that the reporting of calcium, phosphate, and parathyroid hormone concentrations in Pb workers is a matter of great concern for professionals in environmental medicine or public health.

HOWARD MASON
HSL, Sheffield, UK

DAVID CHETTLE
McMaster University, Ontario, Canada

Pb and 1α,25(OH)2D3, concentrations, we thought that a direct comparison of our work with theirs was not possible due to the difference in the concentrations of Pb exposure, the fact that they had measured tidal Pb, and that also our subjects were primarily exposed to Pb. Mason and Chettle raise two separate issues, the first about the correlation between blood Pb and plasma 1α,25(OH)2D3, D3, and the second draws attention to the need for caution when assuming that values derived from adult studies may be applied to children.

About the correlation between blood Pb and plasma 1α,25(OH)2D3, D3, our interest lay in the fact that concurrent exposure to Cd seemed to enhance the positive correlation between blood Pb and plasma 1α,25(OH)2D3, D3, at concentrations below the appearance of lead toxicity, with no threshold effect.

The second point raised was not an intentional part of our study, as we only mentioned the results of other studies on children in our discussion to suggest possible mechanisms for these opposite findings. However, we would agree with this suggestion of caution when extrapolating results obtained from adults to children, and also that children may be more susceptible to environmental hazards than adults. We found that blood Pb concentrations were significantly increased in children who did not wash their hands before eating compared with those who did (Chalkley SR, Hardman T, Strehlow CD, et al). Report on project to study the impact of lead in gasoline regulations in the UK (1999, manuscript in preparation).

In London schoolchildren with concentrations of mean cell volume (MCV), mean cell haemoglobin (MCH), and serum ferritin below the reference ranges, the blood Pb and erythrocyte protoporphyrin (EPP) concentrations were significantly higher than those found in children whose MCV, MCH, and serum ferritin values were within the reference ranges. Monitoring the concentrations of Pb in air in the school playgrounds indicated that these children were all exposed to high concentrations of Pb in air (Chalkley SR, Hardman T, Strehlow CD, et al). Report on project to study the impact of lead in gasoline regulations in the UK (1999, manuscript in preparation).

Pb and 1α,25(OH)2D3, concentrations, we thought that a direct comparison of our work with theirs was not possible due to the difference in the concentrations of Pb exposure, the fact that they had measured tidal Pb, and that also our subjects were primarily exposed to Pb. Mason and Chettle raise two separate issues, the first about the correlation between blood Pb and plasma 1α,25(OH)2D3, D3, and the second draws attention to the need for caution when assuming that values derived from adult studies may be applied to children.

Exposure-response relations of α-amylase sensitisation in British bakeries and flour mills

Error—The publication of this paper by Nieuwenhuijzen et al was accompanied by an unusually high level of media interest in the United Kingdom with typical banner headlines that read “exposure to α-amylase is a significant health risk for those employed in bakeries and flour mills”. The authors’ press release included a comment that “urgent action is needed to reduce these high levels of fungal amylase and the high sensitisation rates of up to 30%”. Although the assay for amylase and the data on exposure response are new, the risk of sensitisation to fungal amylase in bread bakeries has been recognised for some time. On the basis of the research carried out within one of the large food companies in the United Kingdom, the trade organisations representing the milling and baking industries have taken a proactive stance in both proposing exposure standards and producing training material to reduce the risk of sensitisation to fungal amylase. Unfortunately the authors of the paper have not made mention of these facts.

On a slightly more disturbing note, there are two conclusions in the paper which are difficult to justify on the basis of the data presented. The first is the statement that “exposure to α-amylase is a significant health risk”. Although there is no dispute about the high prevalence of markers of sensitisation to amylase, in this case a positive or negative enzyme linked immunosorbent assay (ELISA) or the large numbers with respiratory symptoms, these are essentially independent observations. To show a causal relation between the observations would require detailed histological (rather than functional or biochemical) evidence (rather than a respiratory questionnaire) to establish the relation between the occurrence of symptoms and working patterns which give rise to high levels of amylase exposure. It is worth noting that there are reasons quite apart from sensitisation which could explain the high level of symptoms. The groups of milling and baking employees with the highest exposures to fungal amylase are also those who may have high total inhalable dust exposures (>10 mg/m3). It is entirely possible that their symptoms (the health effect) may simply be the result of a non-specific irritant response.

The second conclusion which is difficult to defend is that amylase produces a health risk in flour mills. Unlike the data from the dispensing and mixing category in bread bakeries, which show a consistently high exposure in a group who handle fungal amylase in relatively concentrated form (bread improvers), the conclusion on risk in flour mills is based on limited and inconsistent data. Essentially it relates to a small sample with a high arithmetic mean. This is probably distributed results in a single category (flour mill) at one of the four milling and packing sites, with lesser support from the hygiene group at the same site and at one other site. The authors do not seem to have an understanding of the milling process and hence how amylase exposure may arise. Firstly, not all mills add fungal amylase to flour. Only those which make flour for bread baking would add amylase, and that would be to improve some of their products. When fungal amylase is added, it goes into the final stream of product from the mill. Thus potential high exposures are limited to a small group of the workforce who make these products. Subsequent handlers of the flour, such as packers, will be exposed to a concentration of fungal amylase in the final flour mix of around 0.0001 µg/m3 by weight. There is some evidence to suggest that typical exposures to dust from flour that contains amylase do not present a risk of sensitisation. Incidentally, the findings of Nieuwenhuijzen et al of low exposures in the packing and warehousing groups support this viewpoint.

In summary, it seems a pity that a paper which presents new and important data on sensitisation in bakery workers should be spoiled by pressing the interpretation of findings too far.

T A SMITH
Ranks House McDougall
National Association of British and Irish Miller

M T BITHHELL
Federation of Bakers

Editor—You recently reported on this paper by Nieuwenhuijse et al. A great deal of research has been carried out in a range of manufacturing companies in the United Kingdom, particularly in milling and baking. This research highlighted the specific risks of exposure to enzymes such as fungal α-amylase at high concentrations. These high concentrations are present in flour treatment agents (bread improvers) used in bread baking.

As a result bakers have introduced specific controls to minimise the risk of exposure for all our employees, with a recommended exposure of 1mg/m³ or flour treatment agents. The controls included the use of special dust booths, local exhaust ventilation, personal protective equipment, guidance on reducing dust exposure and training packages for handling dusty ingredients.

The guidance and training packages are developed in conjunction with all the industries that use flour and are supported by the Health and Safety Executive, the plant and craft baking industries and the trade unions representing employees. Details of the training package follow.

The Federation of Bakers represents all the leading bakery companies in the United Kingdom who produce 80% of the nation’s bread.

ANNE LINEHAN
The Federation of Bakers, 6 Catherine Street, London WC2B 5JW. Tel: 0171 420 7190; Fax: 0171 379 0542.

Breathe easy: training programme

From the Federation of Bakers

The successful management of dust is a vital function in the baking industry—from the traditional craft baker producing and selling his own range of bread and confectionery, to the large wholesale bakery producing up to 10,000 loaves an hour.

This comprehensive training programme explains the potential hazards and the action that management and individual workers should take to make sure their workplace is a safe and healthy environment.

The video section of the programme demonstrates the correct way to handle dusty ingredients and highlights the practical steps that can be taken to reduce the level of dust in the atmosphere.

Contents

- Trainer’s notes
- Training video (running time about 20 minutes)
- Topic cards—eight cards with broad questions for group or individual use
- Multiple choice questions
- Guidance on dust control and health surveillance in bakeries—a 16-page booklet compiled by the Health and Safety in Bakeries Liaison Committee
- Important contacts and addresses.

Processes covered in the training programme

- Tipping and sieving ingredients
- Weighing and dispensing ingredients
- Mixing
- Dusting—hand and mechanical
- Choosing and wearing the right personal protective equipment
- Local exhaust ventilation—choosing, maintaining and using correctly
- Hygiene—cleaning, clearing spillages
- Health surveillance.

Price £34.99 plus VAT, postage and packaging.

Available from: The Federation of Bakers, 6 Catherine Street, London WC2B 5JW. Tel: 0171 420 7190; Fax: 0171 379 0542.

Authors’ reply—Although the statement that “urgent action is needed to reduce these high levels of fungal amylase and the high sensitisation rates of to 30%” was not ours, but that of OEM’s press release, we support this conclusion and greatly welcome the initiatives that apparently have already been taken by the bakery industry. We suggest, however, that the organisations take care if they want to use the results of the studies in one of the large food companies to set an exposure standard given the limited information on exposure including the representativeness, level, duration, and definition of exposure (workers with “regular” exposure), the labour turnover, including how many left and why, bearing in mind the aims of the studies and the basic statistical analyses. The main aims of the other papers seemed to be categorise any symptoms or sensitisation into diagnostic categories—for example, respiratory irritation or occupational asthma, and to describe their overall (relatively low) prevalence rather than exploring any exposure—response relation as we aimed for in our work. “We found that the overall prevalence of sensitisation was relatively low (about 5%) and that only by categorising workers by exposure levels and taking into account movement of workers it became clear that among the exposed areas a large proportion of the workers became sensitised (about 30%).” This is important information for the prevention of sensitisation. We do not agree with the suggestion by Smith et al that sensitisation is not a relevant end point. In the previous study in The Netherlands sensitisation to α-amylase was strongly associated with reported work related respiratory symptoms, of both upper and lower airways. In this study we found no association, but this could, for example, be due to the movement of workers away from exposure or the relatively short duration of exposure. We further know from other studies among workers exposed to high molecular weight plant allergens that sensitised workers have more symptoms than non-sensitised workers, and that the likelihood of the presence of symptoms in sensitised workers is associated with duration of exposure. Few longitudinal studies are available, but the limited evidence existed suggests that sensitised workers develop bronchial hyperresponsiveness and symptoms soon after sensitisation. It is likely that those who became sensitised to α-amylase are more likely to develop occupational asthma (when exposed) than those not sensitised, and reducing the risk of sensitisation will reduce the risk of occupational asthma. We acknowledge that respiratory symptoms occur in the absence of sensitisation. The concentrations at these symptoms occur are not well described, but it is unlikely that these symptoms occur below the inhalable dust or allergen concentrations at which sensitisation occurs. For risk assessment purposes it seems therefore reasonable to take sensitisation as a critical end point for the risk evaluation.

For exposure-response modelling as performed in our studies, there is no need to include a cross section of the whole industry as long as the study is not hampered by different forms of bias, well known to most epidemiologists. Whether the risk assessment is appropriate for other exposed populations than the study population is a matter of generalisability and comparability. Other exposure settings, where workers are exposed to the same allergens, but possibly at different concentrations, are usually within the limits of generalisability. A well designed exposure assessment study throughout the United Kingdom baking and milling industry would be welcomed, and would provide information on exposure levels and for risk assessment. We found detectable, and sometimes high, concentrations of α-amylase at half the flour milling sites, site 1 and site 10, among, for example, flour millers, packers, and cleaners (hygiene). As we stated in our paper the great majority of the sensitisation was exposed to non-detectable or very low concentrations of α-amylase, and only a small proportion to high concentrations. We think that these high concentrations of α-amylase should be reduced. This would most likely lead to a reduction in sensitisation in α-amylase.

MARK J NIEUWENHUIJSEN
DICK HEEDERIK
GERT DOEKE
KATHERINE M VENABLES
ANTHONY J NEWMAN TAYLOR

Correspondence to: Dr Mark J Nieuwenhuijse, Th Huxley School of Environment, Earth Science and Engineering, Centre for Environmental Technology, Imperial CU of Science, Technology, and Medicine, 48 Prince’s Gardens, London SW7 2PF, UK.

Health effects among workers in sewage treatment plants

In the May 1999 issue, in the short report on health effects among workers in sewage treatment plants, Professor Rylander refers to the recent study by Brugha et al. on risk of hepatitis A infection in sewage workers and quotes an odds ratio of 3.7 for risk of hepatitis A in workers in sewage treatment plants. In fact, a significant hepatitis A infection was found only for employees who reported frequent exposure to untreated sewage—that is, employees working regularly underground in the sewers—and not for the employees who worked in sewage treatment plants who encountered mainly treated sewage in the course of their work.

SHEILA ANDREN
RUALRI BRUGHA

Correspondence to: Dr Sheila Andren, Occupational Health Medical Adviser, Thames Water Utilities, Health and Safety, Mogden Sewage Treatment Works, Mogden Lane, Isleworth, Middlesex, TW7 7LW, UK.

BOOK REVIEWS

If you wish to order, or require further information regarding the titles reviewed here, please write or telephone the BMJ Bookshop, PO Box 295, London WC1H 9YE. Telephone 00 44 171 383 6819; fax 00 44 171 383 6663; email confunit@bma.org.uk

Guidance on the development of educational and training curricula. Edited by: MARTIN FITZPATRICK, XAVIER BONNFEOY. (Pp 198; ISBN 185375 1350 8. The authors of this book have given themselves a very broad objective which in itself is unachievable: to define content and methods for teaching environmental health in Europe (east and west). The book wants to show the administrators as well as those who want to build up curricula and those who teach in how to do this. Also it considers all different levels of teaching. In this context the scheme about different levels of training is quite useful. The book provides background information for the development of training programmes in environmental health, it describes the application of existing methods for teaching environmental health topics, however, the tables of who teaches what, and who needs what, are sometimes contradictory. The obvious aim of not forgetting anybody in any list about who should be taught what and what should be taught by whom and which fields should be covered, are not completely consistent. For instance, basic areas of attitudinal competence start with “caring attitudes towards people” and “active concerns for public health”. In the disciplines covering the field of environmental health, however, medicine and public health are not mentioned (page 33). The annexes give detailed contents of curricula for different environmental health professionals which might be used as a check list for existing courses or stimulate teachers to expand on certain topics but on the whole remain superficial and do not help to design a teaching programme. The book might also be useful in harmonising some of the environmental health teaching programmes in Europe. It does not help anybody who wants to learn something about environmental health, but this is probably the context in which it is unable to bridge the gap between what should be taught on which level and the content to be taught, its usefulness therefore will remain restricted to those who want to build up a traditional curriculum for environmental health personnel and are looking for teachers in different fields. There might be a need for such a book in parts of Europe.

URNULA ACKERMANN-LIEBRICH

Analysis of hazardous substances in biological materials, volume 6. Edited by: ANGERB ER J, SCHOLLER K-H. (Pp 277; ISBN 3 527 27040 X. This publication is volume 6 of a series on this topic produced by the Deutsche Forschungsgemeinschaft Commission for the Investigation of Health Hazards of Chemical Compounds in the Work Area. The sections of these books are distilled from meetings of a standing working subgroup of the Commission to which numerous guests and ad hoc experts are invited to contribute. As a result, the material presented has been scrutinised and reviewed by many leaders in the field and, therefore, represents an extremely reliable and authoritative consensus of opinion. As with the previous issues, the format consists of a monograph which covers the use and occurrence of each substance or substance group, the associated health hazards, metabolic and excretion data, exposure limits, and biological tolerance values. This is followed by an account of the recommended method for analysis of the compounds in biological fluids. This is presented in great detail such that a laboratory analyst with the requisite equipment to hand should be able to reproduce the method with minimum effort. Each method is also designed to detect the full concentration range of interest to environmental medicine and that for occupational medicine. This volume deals with aluminium, ami trogines, hydrocarbons, pesticides, pentachlorophenol, phenols and pyrethroid metabolites, thorium, and uranium in the manner already described. Also there is an introductory chapter on inductively coupled mass spectrometry (ICP-MS) which is probably the most powerful technique yet devised for trace element analyses. One important feature of ICP-MS is the facility to screen biological samples for increased concentrations of a whole series of parameters simultaneously with the same sample pretreatment procedure and during the same analytical run. An example of this application is described in a later section where a collective method for the analysis of antimony, cadmium, platinum, mercury, tellurium, thallium, bismuth, tungsten, and tin in urine samples. The value of having access to this methodology in environmental medicine investigations is self evident. The book itself is well produced with high quality diagrams and comprehensive lists of up to date references. The translation into English from the original German version has been carried out with great skill.
This publication, like the previous five volumes in the series, is a valuable work of reference which is aimed primarily at analytical chemists, although much of the review material will interest occupational physicians and provides useful background information on what analyses are possible, limits on sample collection, and guidance on interpreting the analytical data.

Brian Widdop

The American Conference of Governmental Industrial Hygienists’ book of threshold limit values (TLVs) is regarded as an essential reference book for industrial hygienists and occupational physicians worldwide. This new edition is, as before, pocket sized but now ring bound and contains even more information. The book is often used only for looking up TLVs; this is a great pity. The introductory textual material is particularly valuable and provides a concise introduction to the principles of standard setting in regulatory toxicology. For example, an admirably short and clear explanation of the log normal distribution of short term exposure measurements likely to occur in conjunction with well controlled processes is provided. This leads to a transparent explanation of the derivation of excursion limits. The appendices provide further valuable information. Carcinogens, substances of variable composition, PTFE/decomposition products, welding fumes, and mixtures are all considered. Appendix D focuses on particles and defines the descriptors used to describe particle mass functions. The change of the median cut off point for a respirable particulate matter sample (now 4.0 µm compared with 3.5 µm in previous editions) is noted.

The second half of the book deals with biological exposure indices. Biological specimens—for example, urine—are easy to collect and even easier to collect inappropriately—for example at the wrong time of day or over the wrong period. The background information explains the theoretical background to biological sampling. The third part of the book deals with physical agents: noise, vibration, ergonomics, ionising radiation, lasers, non-ionising radiation, and thermal stress. Here too the explanatory notes are clear and concise.

In summary: this is an indispensable book. I’ve had Rom beside me for 6 months and have used it to look up knotty problems of environmental and occupational medicine: it has proved unfailingly excellent. Looking things up has led to reading many whole chapters and this has been no hardship: chapters are well indexed, balanced, and, blessedly, not too long.

This book is organised into three large sections and 136 chapters. A chapter thus averages just over 13 large, double column pages. Reading the thoughtful introductory chapter led me to:

“Importantly, the journal of the faculty of occupational medicine in the United Kingdom has changed its name from the British Journal of Industrial Medicine to Occupational and Environmental Medicine”.

Excellent! The first section continues with chapters on our specialty—history, its methods, its successes and its failures. In chapter 9 the pace changes: a series of chapters on the immune system, molecular biology, carcinogenesis, a whole chapter on Epstein-Barr viruspressor genes, and other rather biochemical topics follow. These are hard going in places—but the short chapter format lets the reader reach the end of each without collapse. How many occupational and environmental physicians will read these chapters? My guess is: too few.

The next batch of chapters deals with the lung (chapters 19–44, a monograph in themselves) and then other organ systems (chapters 45–67). The chapters on the lung begin with Lippmann on particle deposition, later on ozone, and cover all the standard areas of occupational pulmonology. Air pollutants are well represented, including Ustel on SO2 and H2SO4 aerosols and Guaidi on respiratory irritants. Rom contributes chapters on asbestos related diseases and on silicates and benign pneumoconioses. The coverage is impressive: even volcanic ash is discussed. Picking out individual chapters is always invidious but Becklake’s chapter on occupational exposures as a cause of chronic airways disease struck me as a remarkably judicious account of what has been a vexed question: the section on the implications of the recent shift in opinion in this area should be read by all occupational physicians.

Chapters on specific problems: metals, organic chemicals, and radiation follow. Here I’ve dipped in and out but the need to find out things. Aluminium, lead, and cadmium have all been problems to me and the chapters have helped. Benzene and 1,3-butadiene seem interminable problems in the air pollution field and here, too, the chapters have been helpful. The chapter by Silbergeld and Thomas on dioxins and related compounds was an invaluable find: the links with endocrine toxicity are better explained here than I could reasonably have hoped.

The chapters (113–123) on environmental issues are helpful; well known names abound: Samet, Dockery, Spengler, Devlin. Gulf War syndrome has proved a problem, as do the effects of global warming. The book ends with chapters on broader issues including regulatory systems, law, and ethics. Roger McClellan on risk assessment is particularly excellent.

Who is this book intended for? At £149.00 it is expensive but extraordinary value for money and should be considered by anybody training in or concerned with environmental medicine. Indeed, 6 months’ selective reading would form an excellent course of study! For the consultant dealing with problems a bit outside his or her personal area of expertise it is an outstanding guide; for the toxicologist interested in the health effects of individual compounds it is invaluable. In conclusion: this is the best reference book currently available on occupational and environmental medicine.

R. L. Maynard

Reviewing a book of nearly 2000 pages is a challenge. Should one dip and skip, read a series of chapters in small or simply use it?
the process through the International Programme of Chemical Safety has been to establish Poisons Information Centres, with few countries having specialist chemical information centres, therefore this advice may be confusing.

- Determining the population at risk and health impact—includes a valuable comment on the need for a case definition but does not recommend early biological and environmental sampling.

- Assessing the local response capacity—comments on the vulnerability of health care facilities to chemical contamination. This section does draw attention to the need for protective equipment and decontamination facilities.

A useful checklist of all the many issues that affect health impact assessment in a chemical incident is included. Although detailed, covering 13 different critical issues, it is not complete as it really considers acute not chronic incidents. This is not surprising considering the complexity of the investigation and management of chemical emergencies.

My main concern is that sources of information and advice are not given for any of these emergencies. The three organisations who collaborated in the preparation of this book are mentioned—interestingly enough none of these were a chemical information centre.

VIRGINIA MURRAY

Occupational and Environmental Medicine - http://www.occenvmed.com

Visitors to the world wide web can now access Occupational and Environmental Medicine either through the BMJ Publishing Group’s home page (http://www.bmjpg.com) or directly by using its individual URL (http://www.occenvmed.com). There they will find the following:

- Current contents list for the journal
- Contents lists of previous issues
- Members of the editorial board
- Subscribers’ information
- Instructions for authors
- Details of reprint services.

A hotlink gives access to:

- BMJ Publishing Group home page
- British Medical Association website
- Online books catalogue
- BMJ Publishing Group books.

The web site is at a preliminary stage and there are plans to develop it into a more sophisticated site. Suggestions from visitors about features they would like to see are welcomed. They can be left via the opening page of the BMJ Publishing Group site or, alternatively, via the journal page, through “about this site”.