designed to investigate effects of EMFs. Factors possibly associated with cancer were: work environments where soldering was practiced, the use of chemicals and solvents, and piercing and sawing asbestos plates for thermal insulation. When other authors have cited these studies, the term “exposure to EMFs” should have been replaced by “working in electronics-related industries”.

This is an important distinction and not just a matter of semantics.

Articles continue to be cited incorrectly. Erren et al. stated that Vägerö and Olin showed that EMFs “have been associated with lung cancer’. Wilson and Stevens summarised studies already mentioned and a more recent one as being suggestive of an association between exposures to EMFs and cancer. Henshaw et al. and Miyakoshi et al. cited Guenel et al. as also in support of this association. Guenel et al., however, noted that the risk “was mainly in electricians in installation works and iron foundry workers. Besides EMFs other exposures should be considered as possible aetiological agents”. Fear et al. listed some of these studies as showing that “cancers have been previously linked with EMF exposure to extremely low frequency EMFs. Again, “working in electronics-related industries” is not equivalent simply to “exposure to EMFs”.

Raabe and Wong noted that “electrical exposure has been overemphasised in one of the studies’ mentioned above actually consisted of people with a graduate degree in electrical engineering. As the authors noted: “An academic degree is obviously not a good measure for EMF exposure.”

It is misleading to cite references that do not support the alleged associations with EMFs with cancer. Improper citations are not to the original authors in the journal, who reported their results with all the necessary caveats regarding correct interpretations of their findings. Hopefully, in the future, there will be fewer errors of citation of the authors. The opinions are those of the authors and do not necessarily state or reflect those of the US government.

JAMES R JAUCHEN
Radiofrequency Radiation Detection, Occupational and Environmental Health Directorate, US Air Force Armstrong Laboratory, 8308 Hawth Road, Brooks Air Force Base, Texas 78235-5301, USA


This is probably the best single volume reference work on the toxicology of chemicals currently available. The data presented have been extracted from the well known Dangerous Properties of Industrial Chemicals, 9th ed. Data on more than 5000 compounds and preparations are presented: each entry being in a consistent and helpful format. For the occupational physician the provision of OSHA, ACGIH, and DFG (MAK) values where available is invaluable. Also, CAS numbers and details of current situations of carcinogenicity are provided. An exhaustive list of synonyms (over 100 for malathion) is given for each compound as is a succinct description of its physical characteristics. Some of the descriptions of physical characteristics are perhaps eccentric: few will meet ozone as “blue or violet-black solid” or even as a “dark-blue liquid!” For the physician the “safety profile” will probably be the most used part of any entry. This profile is telegraphic in style but packs in a lot of useful information. No information on case management is provided. A valuable feature of this book is that each compound is provided for groups of compounds—for example, carbonates, chlorates, esters. Of course the value of a brief safety profile of a group of compounds as diverse as dichloromethane can be questioned but I have found these general entries invaluable.

The index is heavily cross referenced and occupies 367 pages each of two closely printed columns.

As to single volume competitors: the Merck Index is the obvious one. Merck offers wider coverage but less information of immediate use to the occupational physician.

As a book to turn to when asked the symptoms likely to be produced by a compound of which you have never heard this is excellent. Good value at £99.00