Wool and grain dusts stimulate TNF secretion by alveolar macrophages in vitro

D M Brown, K Donaldson

Abstract

Objective—The aim of the study was to investigate the ability of two organic dusts, wool and grain, and their soluble leachates to stimulate secretion of tumour necrosis factor (TNF) by rat alveolar macrophages with special reference to the role of lipopolysaccharide (LPS).

Methods—Rat alveolar macrophages were isolated by bronchoalveolar lavage (BAL) and treated in vitro with whole dust, dust leachates, and a standard LPS preparation. TNF production was measured in supernatants with the L929 cell line bioassay.

Results—Both wool and grain dust samples were capable of stimulating TNF release from rat alveolar macrophages in a dose-dependent manner. The standard LPS preparation caused a dose-dependent secretion of TNF. Leachates prepared from the dusts contained LPS and also caused TNF release but leachable LPS could not account for the TNF release and it was clear that non-LPS leachable activity was present in the grain dust and that wool dust particles themselves were capable of causing release of TNF. The role of LPS in wool dust leachates was further investigated by treating peritoneal macrophages from two strains of mice, LPS responders (C3H) and LPS non-responders (C3H/HeJ), with LPS. The non-responder mouse macrophages produced very low concentrations of TNF in response to the wool dust leachates compared with the responders.

Conclusions—LPS and other unidentified leachable substances present on the surface of grain dust, and to a lesser extent on wool dust, are a trigger for TNF release by lung macrophages. Wool dust particles themselves stimulate TNF. TNF release from macrophages could contribute to enhancement of inflammatory responses and symptoms of bronchitis and breathlessness in workers exposed to organic dusts such as wool and grain.

Keywords: organic dust; macrophage; tumour necrosis factor; endotoxin; bronchitis

Tumour necrosis factor (TNF) is a proinflammatory cytokine produced by macrophages or monocytes in response to various stimuli. In the non-stimulated state, alveolar macrophages do not secrete TNF. However, triggers of macrophage activation including the phagocytosis of organic and inorganic dusts, phorbol esters and bacterial lipopolysaccharide (endotoxin) (LPS) stimulate secretion of TNF both in vivo and in vitro. The effects of TNF on other cells are wide ranging, and as well as causing differentiation of myeloid cell lines and growth of B-lymphocytes, TNF also stimulates mitogenesis of lung fibroblasts. An important proinflammatory action of TNF and other cytokines is the activation of cell adhesion molecules, such as the leukocyte integrins (CD11a b/c/CD18), and intercellular adhesion molecule-1 (ICAM-1). Endothelial cell adhesion molecules are also activated by TNF. The increased adhesivity of the endothelial cell adhesion molecules enhances neutrophil adherence, an essential first step in the migration of leucocytes from the microvasculature into the tissues to sites of inflammation.

Organic dusts include a range of airborne material comprising plant components, pollen, and spores. Dust which is deposited in the alveolar region of the lung may cause activation of complement, which is present in the alveolar lining fluid, with generation of leucocyte chemotaxins. These events have previously been shown with extracts of organic dusts, endotoxin, and activation of serum. In the lung after deposition of organic dust, a sequence of events may be envisaged where alveolar macrophages become activated, secrete inflammatory mediators, and act in a synergistic manner with activated complement fragments to enhance inflammation.

In a previous study, a relation was shown between the airborne mass concentration of wool dust and symptoms of airway irritation in exposed workers in wool textile mills in the north of England. Dusts collected from the air of wool mills were shown to be contaminated with bacterial endotoxin and to be able to produce an acute inflammatory response when instilled into the lungs of rats but were not notably toxic to macrophages and epithelial cells. Endotoxin has been implicated in symptoms of byssinosis in workers in a wool carpet factory in Turkey. The wool dust collected from the air of English wool mills was also capable of up-regulating homotypic adhesion of alveolar macrophages by activation of LFA-1/ICAM-1 ligand-receptor binding. Wool dust also caused granulomatous lesions after instillation into the lungs of rats. In this study, we have examined the ability of...
inspirable wool dusts, sieved grain dust, and
leachates from the dusts to produce TNF
creation by rat alveolar macrophages in vitro.

Materials and methods

ANIMALS

Male SPF HAN rats (Charles River, Margate,
UK) were used throughout.

COLLECTION OF WOOL DUSTS

Dusts were collected from two wool process
mills in the north of England designated S
(start) and M (middle) which represented
opening-blending and combing processes
respectively. A series of six Institute of
Occupational Medicine static inspirable dust
samplers, 19 were placed at each site in the dust-
est zones. Samplers were operated for a full
work shift and an inspirable sample of dust was
collected on Gelman GLA filters with a 5 μm
pore size (Gelman Hawksley, Northampton).
Dust was removed from filters with a soft brush.
Dust from each mill was pooled into a tube, weighed, and mechanically
rotated for 24 hours to ensure mixing and these
samples were stored at −20°C until required.
The wool dust used for the study was inspirable—that is, dust which could pass into
the upper airways. This fraction of dust also
included a large proportion of respirable dust
which could penetrate to the terminal bronchi-
oles and proximal lung parenchyma.

COLLECTION OF GRAIN DUST

Samples of dust were collected from the ledges
of a barn which stored wheat and barley. The

dust was sieved through a 200 μm mesh,

followed by a 45 μm mesh, by shaking mechani-
cally for 30 minutes. The dust so obtained from
this process and used in all subsequent assays
was less than 45 μm diameter and included a
substantial proportion of respirable dust.

PREPARATION OF WOOL AND GRAIN DUSTS AND

PREPARATION OF LEACHATES

Separate samples of leachate (materials leached
from organic dust into aqueous solution) were
prepared by mixing wool dust and grain dust in
phosphate buffered saline (PBS) at a concen-
tration of 5 mg/ml at room temperature for 24
hours. Solutions were then centrifuged at 3000
rpm for 15 minutes to remove large fragments
and then finally filtered through 0.22 μm filters
to sterilise the leachates. Half of each sample
was then depleted of endotoxin by passing
down Polymyxin B columns (Flow, High
Wycombe, Bucks) according to the manufac-
turer’s instructions.

MEASUREMENTS OF THE ENDOTOXIN CONTENT

OF WOOL AND GRAIN DUST LEACHATES

The “Coatest” (ICN, Flow, High Wycombe,
Bucks) Limulus amoebocyte lysis (LAL) based
spectrophotometric assay was used to assess the
endotoxin content of the wool and grain
leachates.

BRONCHOALVEOLAR LAVAGE

Animals were killed with a single intraperi-
toneal injection of Nembutal, the thoracic cavity
was opened and the lungs were cannulated and
removed. The lungs were then sequentially
lavaged with four 8 ml aliquots of saline at
37°C and pooled into a single tube. Cells were
centrifuged at 1000 rpm in a refrigerated bench
centrifuge for 10 minutes, and resuspended in
F-10 medium (Gibco, Paisley) containing 0-2%
bovine serum albumin (BSA) (Fraction V
Sigma, Poole, Dorset) and kept on ice. Total
cell numbers were evaluated and cyt centrifuge
smears, which were stained with May-
Grunwald Giemsa, were prepared. One hun-
dred cells per cytopsin were evaluated to obtain
a differential cell count. Cells were adjusted to an
approximate concentration of 1 × 10^6 cells/ml in medium
containing the dusts at various concentrations
and 1 ml was pipetted into wells of a 24 well
plate (Greiner Labortecnik, Cam, Dursley).
After incubation for one hour to allow adher-
ance the dusts were added, suspended in the
same medium. Macrophages were incubated with
dust overnight (16 hours) at 37°C in 5%
CO2 after which the medium was removed and
centrifuged at 3000 rpm for 15 minutes to
remove dust particles. The supernatants were
stored at −70°C until assay for TNF.

PREPARATION OF SUPERNATANTS FROM C3H AND

C3H/HEJ MOUSE PERITONEAL MACROPHAGES

A separate group of dust leachates was pre-
pared for use in the TNF assay in F-10 medium
(Gibco, Paisley) containing 0-2% BSA, (Flow
Labs, High Wycombe). This medium con-
tained negligible amounts of LPS, as defined by
the manufacturer’s assay.

Macrophages from C3H/HEJ mice are unre-
ponsive to the effect of LPS, 22 and the related
C3H mice respond normally. Peritoneal exu-
date cells were treated with dust leachates to
prepare supernatants, which were then assessed
for their TNF content. This allowed the
involvement of endotoxin present in the
leachates to be estimated.

Mice were treated with a single intraperi-
toneal injection of 0.5 ml of 1% thiglycollate
broth. Three days later, these mice were killed
with ether, and the peritoneal cavity was
lavaged with 3 × 2 ml volumes of PBS con-
taining heparin at a final concentration of 100
U/ml. Lavage fluid was centrifuged at 1000
rpm for five minutes, resuspended in F-10 +
0-2% BSA and cells were counted. Cells were
adjusted to 1 × 10^6 cells/ml and 1 ml added
to each well in 24 well plates which were incu-
ated at 37°C for one hour. The medium was then
removed, adherent cells were washed
twice with PBS, and the dust leachates (pre-
pared in F-10 + 0-2% BSA) added to the
wells. Plates were incubated at 37°C overnight,
supernatants removed, spun at 3000 rpm for 15
minutes, and stored at −70°C until required.

ENDOTOXIN DOSE RESPONSE

Endotoxin from Escherichia coli serotype
011:B4 (Sigma, Poole, Dorset) was made up to
1 mg/ml in PBS, and stored at −70°C.
Some experiments comprised treating alveolar
macrophages with LPS at various concentra-

tions. Supernatants from leachate treated
macrophages were prepared by treating adherent macrophages with 1 ml of leachate and endotoxin depleted leachate.

TNF ASSAY
This assay relies on the fact that cells of the mouse fibroblast cell line L929 are specifically susceptible to the lethal effects of TNF if the cells are pretreated with the protein synthesis inhibitor actinomycin D. After treatment with TNF, the surviving cells are stained and the absorbance of stain is taken as a quantitative measure of survival, from which the amount of cell death can be calculated. The specificity of the assay for TNF in rat macrophage supernatants has been confirmed with specific antibody against TNF and is calibrated with recombinant TNF.21

The L929 cells were removed from continuous culture with 0·1% trypsin-EDTA (Gibco, Paisley, Scotland), and resuspended in minimal essential medium (Gibco, Paisley), containing 10% heat inactivated foetal calf serum, penicillin, and streptomycin (complete medium). Cells were adjusted to 3 × 10^5 cells/ml in complete medium, and 100 μl was added to each well in 96 well plates (Greiner Laborteknik, Cam, Dursley), which were incubated at 37°C overnight in a humidified atmosphere of 5% CO₂.

On day 2 the medium in each well was replaced with minimal essential medium containing 5% foetal calf serum, 1 μg/ml actinomycin D (Sigma, Poole, Dorset), without antibiotics. The top row of each plate received an additional 50 μl of medium containing actinomycin D at a concentration of 2 μg/ml. The bottom row of each plate served as the control wells (six wells) and the remaining set of six wells were used as blanks to set the spectrophotometer.

The top row of each plate received a final 50 μl of test supernatant, each supernatant being measured in triplicate. A multichannel pipette was used to double dilute 100 μl from the top row of wells down the plate, ending before the bottom control wells. The final 100 μl of medium was discarded. One set of wells contained a TNF standard (National Institute for Biological Standards and Control, Potters Bar, Hertfordshire) at a concentration of 100 U/ml. Plates were then incubated for a further 24 hours.

On day 3, the medium and supernatant in each well was removed and replaced with 50 μl of 1% crystal violet stain in 20% methanol for two minutes. Each plate was washed with tap water and allowed to dry, after which each well received 50 μl of 20% acetic acid to make soluble the stained cells. Any bubbles were removed and plates were read at 540 nm with an automatic plate reader interfaced with a personal computer.

TNF CALCULATIONS
The mean optical density (OD) was calculated for each sample dilution as a percentage of the untreated control. The sample dilutions were converted to log, values and regressions performed with the sample OD% v log, dilution.

The log, dilution value that gave an OD of 50% of the control cells was calculated with the equation:

\[\text{OD}% = \text{intercept} + \text{slope} \times \log, \text{dilution} \]

\[\text{log, dilution (50%)} = (50-A)/B \]

The number of units of TNF was finally calculated from the TNF standard, which was included in each experiment. As in the sample wells, the OD, which was 50% of the OD of the control wells, was obtained and related back to the known concentration of TNF in the standard.

STATISTICAL ANALYSIS
Data were examined with analysis of variance.

Results

(1) **TNF PRODUCTION BY RAT ALVEOLAR MACROPHAGES TREATED WITH WOOL AND GRAIN DUSTS IN VITRO**

Alveolar macrophages from untreated rats were obtained by BAL and treated in vitro with whole dust, dust leachates, leachates treated with polymyxin, and a standard endotoxin preparation. The supernatants so produced were estimated for TNF content with the L929 assay. The data in fig 1 show TNF production by macrophages treated with whole wool and grain dust samples.

This figure shows that spontaneous production of TNF in untreated macrophages was virtually nil. In the dust treated cells, at a concentration of 50 μg/ml dust, wool dust S produced about 750 U TNF/ml, dust M 650 U TNF/ml, and grain 550 U TNF/ml. At a concentration of 100 μg/ml the TNF production was about 1750 U TNF/ml in all three cases.

Analysis of variance showed that there was no difference between dusts (F = 0·274; P > 0·05). There was, however, a significant effect of dust concentration (F = 55·40; P < 0·01), but no significant treatment-dose interaction (F = 1·080; P > 0·05).

Both wool and grain dusts are thus potent triggers of TNF production, there was a dose dependent effect of dust and, on an equal mass basis, the dusts did not differ in their ability to stimulate secretion of TNF.

![Figure 1](http://oem.bmj.com/)

Figure 1 TNF production by rat alveolar macrophages untreated or treated in vitro with wool dusts S and M and grain dust. The data are the mean (SEM) of the number of units of TNF contained in supernatants prepared on three separate occasions.
(2) THE EFFECT OF DUST LEACHATES ON TNF PRODUCTION BY RAT ALVEOLAR MACROPHAGES

The possible role of endotoxin associated with dust in causing release of TNF by alveolar macrophages treated with dust was tested by dust leachate with or without depletion of endotoxin on polymyxin columns.

Figure 2, which summarises these results, shows that untreated macrophages produced no TNF. Wool dust leachates stimulated a modest increase in TNF release, wool S leachate producing about twice as much (about 300 U TNF/ml) as leachate M. The grain leachate, stimulated substantially more TNF secretion than wool leachates, in the range of 1500 U TNF/ml. Thus, in this assay system, soluble material from grain was more potent than wool in stimulating TNF production by macrophages, and there was a significant effect of leachate treatment ($F = 81\,65; P < 0.001$).

A striking effect of LPS was seen in supernatants which had been depleted of endotoxin by passing through a polymyxin column (table). Supernatant depleted of endotoxin released substantially less TNF from alveolar macrophages than untreated leachates (fig 2). Analysis of variance showed in these results that there was a significant effect of depletion of LPS by polymyxin ($F = 17\,08; P < 0.05$). There was no significant interaction between different leachates and polymyxin ($F = 0.62; P > 0.05$) indicating that the contribution of LPS was consistent between the different leachates.

The results suggest that a substantial part of the TNF production was due to the presence of bacterial endotoxin.

(3) EFFECT OF PURE ENDOTOXIN ON TNF PRODUCTION BY RAT ALVEOLAR MACROPHAGES

Production of TNF by macrophages treated in vitro with a commercially available endotoxin preparation was assessed to further confirm the role of LPS (fig 3).

There was virtually no TNF produced in only the medium, but this increased to 633 U TNF/ml at 200 ng/ml, the lowest dose used; the response only about doubled when the concentration increased to 800 ng/ml. Thereafter there was a very shallow increase with dose (data not shown).

(4) EFFECT OF DUST LEACHATES AND DEPLETED LEACHATES ON TNF PRODUCTION BY MACROPHAGES FROM C3H/HEJ MICE

Mice of the strain C3H/HEJ do not respond to endotoxin, C3H mice respond normally to endotoxin. Peritoneal macrophages from both these strains were treated with dust leachates and endotoxin depleted leachates to compare the role of endotoxin in TNF secretion.

Figure 3 TNF production by rat alveolar macrophages treated in vitro with various concentrations of lipopolysaccharide. The data are the mean (SEM) of the number of units of TNF in supernatant prepared on three separate occasions.

Figure 4 TNF production by C3H (A normal endotoxin responders) and C3H/HEJ (B endotoxin non-responders) peritoneal macrophages treated with dust leachates and leachates depleted of endotoxin with polymyxin. The data are the mean (SEM) of the number of units of TNF in supernatant prepared on three separate occasions.
Figure 4 summarises these effects and shows that dust leachates can trigger the release of TNF from normal responder C3H mice, as is found with rat alveolar macrophages, although the overall response was lower with rat cells. Removal of endotoxin caused a dramatic reduction in the TNF produced (35 U TNF/ml reduced to 3 U TNF/ml for leachate S, and 55 U TNF/ml reduced to 4 U TNF/ml for leachate M). Grain leachate was not assessed because of the difficulty in preparing a sterile supernatant.

By contrast, in the non-responder C3H/HEJ mouse peritoneal macrophages, very small amounts of TNF were produced, the maximum being 10 U TNF/ml in untreated leachate M, and about 3 U TNF/ml in untreated leachate S. Removal of endotoxin reduced these responses still further, to 2 U TNF/ml for both leachates.

After analysis of variance, there was a significant effect of treatment (medium vs leachate, \(F = 15.89; P < 0.05\)), a significant effect of polymyxin (\(F = 57.70; P < 0.05\)), and a significant difference between the two strains of mice (\(F = 80.43; P < 0.05\)).

Discussion

Tumour necrosis factor is a member of the cytokine family of proteins which are secreted by macrophages, monocytes, and lymphocytes. Secretion is triggered by stimuli such as inflammation, infection or injury, and more specifically by other molecules such as interferon-\(\gamma\). Microorganisms and viruses can also cause TNF production. One of the most potent triggers of TNF and other cytokines is the bacterial endotoxin (LPS). Endotoxin has also been shown to be an activator of the complement system as well as a potent trigger in the immune system and a stimulator of low level chemotaxis release from macrophages. It was notable that in the Snella study, high doses of endotoxin, as found here, were associated with toxicity. The wool and grain dusts used in this study have been shown to be heavily contaminated with LPS, which was also present in aqueous leachates of the dusts.

Rat alveolar macrophages treated in vitro with wool and grain dusts caused significant amounts of TNF to be released in a dose dependent manner. Untreated (medium only) macrophages produced almost undetectable amounts of TNF. In keeping with these results, leachates of dust produced secretion of TNF in modest amounts.

Previous work where guinea pigs inhaled cotton dust which was contaminated with bacterial endotoxin, showed that TNF was produced in the lung only three hours after exposure. That study concluded that endotoxin was the main stimulus causing TNF secretion. Similarly, wool and grain dust depositing in the airways and alveolar region of the lung may potentially cause TNF release from macrophages and epithelial cells mediated mainly by LPS. Tumour necrosis factor may then cause inflammatory cell recruitment into the lung and may stimulate fibroblast proliferation. In a lung chronically exposed to respirable dust on a daily basis, this regular initiation of release of TNF could lead to chronic inflammation with predictable pathological sequelae. Although it is difficult to extrapolate from the acute high dose stimulation of TNF, shown here in vitro, and the chronic effects in someone inhaling dust, a clear role for TNF in the chronic effects of an inhaled dust has been shown. In that study quartz was shown to cause fibrosis (silicosis) in mice but this could be prevented by an antibody to TNF. We do not suggest that TNF is the only mediator that is likely to be involved in the pulmonary response to inhaled wool dust but the importance of TNF in promoting inflammation and leading to chronic lung disease makes these findings of potential importance.

The role of endotoxin in the production of TNF was further examined with the use of leachates of dust which had been treated with polymyxin to remove LPS. The leachates were used to treat alveolar macrophages in vitro and the resulting supernatants were tested for TNF content. Grain and wool dust leachates had about the same amounts of LPS in them, as measured in the Limulus amoebocyte lysate assay. However, in the case of wool dust, the leachates had modest TNF stimulating activity which was lowered by polymyxin treatment that removed the LPS, whereas grain dust leachate had significantly more TNF stimulating activity, which was only halved by removal of LPS in the polymyxin column. This could be interpreted to mean that, as well as a substantial amount of contaminating LPS, another stimulant of TNF secretion is released from grain dust. We have no information on the identity of this material, which could be derived from the grain or contaminating microorganisms. The fact that the whole wool and grain dusts had similar TNF stimulating activities suggests that the wool dust has an additional associated component that is not leachable but is stimulatory to macrophage secretion of TNF. This could be related to biochemistry, or most likely to the fibrous shape, of the grain dust particles and deserves further study.

With reagent grade purified endotoxin, we were able to show that rat alveolar macrophages released substantial quantities of TNF in response to endotoxin. Additional confirmation of the partial role of endotoxin in TNF production by wool dust leachates was shown with mice which are non-sensitive to LPS. Mice of the C3H/HEJ strain have a genetic alteration which renders them non-responsive to LPS. The normal counterpart, C3H, responds normally. Experiments were carried out in which dust leachates and leachates treated with polymyxin to deplete endotoxin were used to trigger release of TNF from peritoneal macrophages from the two strains of mice. The results clearly showed that the non-responder mouse macrophages produced very low concentrations of TNF compared with the normal responder mouse macrophages in
response to leachates from wool dust. Removal of endotoxin resulted in even smaller amounts of TNF production by the cells. Unfortunately, due to contamination problems in the preparation of leachate, we were unable to repeat these studies with grain dust.

Tumour necrosis factor plays an important part in the inflammatory response and affects target cells in different ways. One of the main effects of TNF is that it can enhance neutrophil recruitment to the site of inflammation by activating adhesion molecules on the cell surface causing more cells to adhere to the endothelium of capillaries. The chemotactic ability of TNF for inflammatory neutrophils has been shown in vitro although a separate study showed that TNF could cause inhibition of neutrophil chemotaxis. These effects suggest that TNF has two roles in the chemotaxis of cells. Firstly, TNF can recruit neutrophils to inflammatory sites. Secondly, when cells arrive at this site, TNF acts in the opposite way, causing migration to be inhibited, and the cells to be held at the inflammatory site. The accumulation of neutrophils with increased phagocytic and bacteriocidal capabilities and with greater potential for release of proteinases, superoxide anion, and other molecules is clearly beneficial to efficient host defence. However, in the lungs of people inhaling the organic dusts used here, the proinflammatory events can be envisaged to occur at sites of deposition in the airways and terminal bronchioles. In the long term these could lead to tissue damage and stimulation of mesenchymal cell secretion and proliferation.

Symptoms of bronchitis have been described in workers exposed to wool dust and in grain handlers. In obstructive lung disease, the role of TNF in mediating the inflammatory response and its consequences has been widely reported. Studies show that during exacerbations of chronic bronchitis there is an increase in the number of cells positive for TNFα in the bronchial mucosa. The data presented here suggest a possible role for LPS in causing TNF accumulation that could be a factor in bronchitis in these workers.

In a different study where an organic particle, yeast cell wall 1-3β-D-glucan, was infused intravenously into rats, granulomas were produced in the lung. The presence of chemoattractant protein-1 (MCP-1) derived from monocytes is required for granuloma formation, and this can be induced by TNFα and interleukin-1 (IL-1). Flory et al showed that infusion of antibodies against TNF and IL-1 considerably reduced the size of the granulomas and indicated that these cytokines play a regulatory part in the formation of granulomas produced by organic particles. The wool and grain dusts used in the present study were also capable of producing granulomas in rat lungs after intratracheal instillation. Although production of granulomas is very likely to be a result of the instillation mode of delivery, this provides indirect evidence for the role of TNF in the genesis of granulomas.

The implication of these findings and the results of the dust and leachate experiments, where TNF was produced by rat alveolar macrophages, indicate that the symptoms of bronchitis and breathlessness reported by workers exposed to organic dust may result from similar events in their lungs. These results would indicate that LPS, very likely originating from contaminating bacteria present on the dust surface, could be the trigger for release of TNF leading to the enhancement and maintenance of a chronic inflammatory response in people exposed to respirable organic dust on a daily occupational basis.

We thank Dr M Topping of the Health and Safety Executive for providing grain dust samples. This project was funded by the Health and Safety Executive.
Wool and grain dusts stimulate TNF secretion by alveolar macrophages in vitro

Instructions to authors

Three copies of all submissions should be sent to: The Editor, Occupational and Environmental Medicine, BMJ Publishing Group, BMA House, Tavistock Square, London WC1H 9JR, UK. All authors should sign the covering letter as evidence of consent to publication. Papers reporting results of studies on human subjects must be accompanied by a statement that the subjects gave written, informed consent and by evidence of approval from the appropriate ethics committee. These papers should conform to the principles outlined in the Declaration of Helsinki (BMJ 1964; ii:177).

If requested, authors shall produce the data on which the manuscript is based, for examination by the Editor.

Authors are asked to submit with their manuscript the names and addresses of three people who they consider would be suitable independent reviewers. They will not necessarily be approached to review the paper.

Papers should include a structured abstract of not more than 300 words, under headings of Objectives, Methods, Results, and Conclusions. Please include up to three keywords or key terms to assist with indexing.