NOTICE TO CONTRIBUTORS Occupational and Environmental Medicine is intended for the publication of original contributions relevant to occupational and environmental medicine, including toxicological studies of chemicals of industrial, agricultural, and environmental importance, and epidemiological studies. All papers, as well as full papers, short papers, and reviews, will be considered for publication. Other articles, including review or position papers, will be considered but should not be submitted without first approaching the Editor to discuss their suitability for the journal. Letters to the Editor are always welcome.

INSTRUCTIONS TO AUTHORS Three copies of all submissions should be sent to: The Editor, Occupational and Environmental Medicine, BMJ Publishing Group, BMA House, Tavistock Square, London WC1H 9JR, UK. All authors should sign the covering letter as evidence of consent to publication. Papers reporting results of studies on human subjects must be accompanied by a statement that the subjects gave written, informed consent and by evidence of approval from the appropriate ethics committee. These papers should conform to the principles outlined in the Declaration of Helsinki (BMJ 1964;i:177).

If requested, authors shall produce the data on which the manuscript is based, for examination by the Editor. Authors are asked to submit with their manuscript the names and addresses of three people who they consider would be suitable independent reviewers. They will not necessarily be approached to review the paper.

Papers are considered on the understanding that they are submitted solely to this journal and do not duplicate material already published elsewhere. In cases of doubt, where part of the material has been published elsewhere, the published manuscript and copyright notice should be included with the submitted manuscript to allow the Editor to assess the degree of duplication. The Editor cannot enter into correspondence about papers rejected as being unsuitable for publication, and the Editor’s decision in these matters is final.

Papers should include a structured abstract of not more than 300 words, under headings of Objectives, Methods, Results, and Conclusions. Please include up to three keywords or key terms to assist with indexing.

Papers should follow the requirements of the International Committee of Medical Journal Editors (BMJ 1991;302: 338–41). Papers and references must be typewritten in double spacing on one side of the paper only, with wide margins. SI units should be used.

Short reports (including case reports) should be not more than 1500 words and do not require an abstract. They should comprise sections of Introduction, Methods, Results, and Discussion with not more than one table or figure and up to 10 references. The format of case reports should be Introduction, Case report, and Discussion.

Illustrations Photographs and photomicrographs on glossy paper should be submitted unmounted. Charts and graphs should be carefully drawn in black ink on firm white paper. Legends to figures should be typed on a separate sheet of paper.

References References will not be checked by the editorial office; responsibility for the accuracy and completeness of references lies with the authors. Number references consecutively in the order in which they are first mentioned in the text. Identify references in texts, tables, and legends by Arabic numerals. References cited only in tables or in legends to figures should be numbered in accordance with a sequence established by the first identification in the text of a particular table or illustration. Include only references essential to the argument being presented. Mention all papers in the text or in the discussion of results, or to describe methods which are being used when the original description is too long for inclusion. Information from manuscripts not yet in press or personal communications should be cited in the text, not as formal references.

Use the Vancouver style, as in this issue for instance, for a standard journal article: authors (list all authors when seven or fewer, when eight or more, list only six and add et al), title, abbreviated title of journal as given in Index Medicus (if not address changes to Occupational Medicine), year of publication, volume number, and first and last page numbers.

Proofs Contributors will receive one proof. Only minor corrections can be made at this stage; corrections other than proofreading will be the responsibility of the author.

Reprints Reprints will be charged for. The number of reprints required should be stated on the form provided with the proofs.

Copyright © 1995 Occupational and Environmental Medicine. This publication is copyright under the Berne Convention and the International Copyright Convention. All rights reserved. Apart from any relaxations permitted under national copyright laws, no part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means without the prior permission of the copyright owner. Permission is not, however, required to copy abstracts of articles or a few lines in the context of a written review of the source is shown. Multiple copying of the contents of the publication without permission is always illegal.

NOTICE TO ADVERTISERS Applications for advertisement space and rates should be addressed to the Advertisement Manager, Occupational and Environmental Medicine, BMJ Publishing Group, BMA House, Tavistock Square, London WC1H 9JR.

NOTICE TO SUBSCRIBERS Occupational and Environmental Medicine is published monthly. The annual subscription rate (for 1995) is £139 (US $240). Orders should be sent to the Subscription Manager, Occupational and Environmental Medicine, BMJ Publishing Group, BMA House, Tavistock Square, London WC1H 9JR. Orders may also be placed with any leading subscription agent or bookseller. (For the convenience of readers in the USA subscription orders with or without payment may also be sent to British Medical Journal, PO Box 408, Franklin, MA 02038, USA. All inquiries, however, must be addressed to the publisher in London). All inquiries regarding air mail rates and single copies already published should be addressed to the publisher in London.

Subscribers may pay for their subscriptions by Access, Visa, or American Express by quoting on their order the credit or charge card preferred together with the appropriate personal account number and the expiry date of the card.

Second class postage paid Rahway NJ. Postmaster: send address changes to: Occupational and Environmental Medicine, c/o Mercury Airfreight International Ltd Inc, 2323 Randolph Avenue, Avenel, NJ 07001, USA.

FACULTY OF OCCUPATIONAL MEDICINE The Faculty of Occupational Medicine of the Royal College of Physicians of London is a registered charity founded to promote, for the public benefit, the advancement of knowledge in the field of occupational medicine. The Faculty has offices at 6 St Andrew's Place, Regent's Park, London NW1 4LB.

ISSN 1351-0711.
Bronchial dysplasia induced by radiation in miners exposed to 222Rn progeny

have become obvious with this approach. The exposure-response relation was for active miners. Former miners could be unsuitable, because of a possible disappearance of dysplasia in a proportion of them, thus making the interpretation of the results unclear. In our cohort both smokers and non-smokers showed exposure-response relations, but the group of smokers showed relatively uniform smoking habits (about two thirds of them smoke one pack/day). This could not be expected in every case. Different smoking habits may result in different dysplasia outcomes. Therefore, it is our belief that the non-smokers group gives a better opportunity for the retrospective exposure assessment. In either case, to avoid possible strong differences due to the different way of life, smoking habits, or individual sensitivity of miners in different areas of the world, a preliminary investigation of a group analogous to our group A may be necessary for reliability in such studies.

Conclusion

We conclude that exposure of underground miners to 222Rn progeny results in a significantly increased frequency of squamous cell metaplasia. At the level of notable dysplasia, this frequency follows an exposure-response relation. Sputum cytology could be used for a retrospective assessment of the range of exposures for groups for which this range could not be assessed directly. In the arrangement of such studies the limitations of this approach should be recognised. Further investigations of metaplasia in miners are needed to clarify the exposure-response relation under different conditions.

Induction of P-450 in workers exposed to dioxin

This study was funded, in part, by the Agency for Toxic Substances and Disease Registry (ATSDR).

Instructions to authors

Three copies of all submissions should be sent to: The Editor, Occupational and Environmental Medicine, BMJ Publishing Group, BMA House, Tavistock Square, London WC1H 9JR, UK. All authors should sign the covering letter as evidence of consent to publication. Papers reporting results of studies on human subjects must be accompanied by a statement that the subjects gave written, informed consent and by evidence of approval from the appropriate ethics committee. These papers should conform to the principles outlined in the Declaration of Helsinki (BMJ 1964; ii:177).

If requested, authors shall produce the data on which the manuscript is based, for examination by the Editor.

Authors are asked to submit with their manuscript the names and addresses of three people who they consider would be suitable independent reviewers. They will not necessarily be approached to review the paper.

Papers should include a structured abstract of not more than 300 words, under headings of Objectives, Methods, Results, and Conclusions. Please include up to three keywords or key terms to assist with indexing.
14 Davis JMG, Addison J, Bolton RE, Donaldson K, Jones AD, Wright A. The pathogenic effects of fibrous ceramic alumi-

inium silicate glass administered to rats by inhalation or peritoneal injection. In: Proceedings of the World Health Organisa-
18 World Health Organisation/EURO Technical Committee for monitoring and evaluating airborne MIMMF (1985a). Reference methods for measuring airborne man-

1285–98.
26 Hill JW, Rossiter CE, Foden DW. A phase respiratory mor-

Vancouver style

All manuscripts submitted to Occup Environ Med should conform to the uniform requirements for manuscripts submitted to biomedical journals (known as the Vancouver style.)

Occup Environ Med, together with many other international biomedical journals, has agreed to accept articles prepared in accor-
dance with the Vancouver style. The style (described in full in the BMJ, 24 February 1979, p 532) is intended to standardise requirements for authors.

References should be numbered consec-

utively in the order in which they are first mentioned in the text by Arabic numerals above the line on each occasion the reference is cited (Manson' confirmed other reports 3 . . .). In future references to papers submitted to Occup Environ Med should include: the names of all authors if there are seven or less or, if there are more, the first six followed by et al; the title of journal articles or book chapters; the titles of journals abbreviated according to the style of Index Medicus; and the first and final page numbers of the article or chapter. Titles not in Index Medicus should be given in full.

Examples of common forms of refer-

ences are:
2 Soter NA, Wasserman SI, Austen KF. Cold urticaria: release into the circulation of histamine and eosino-

Are the respiratory health effects found in manufacturers of ceramic fibres due to the dust rather than the exposure to fibres? 1

significantly related to cumulative exposure to respirable fibres. Skin irritation was related to exposure to both inspirable dust and respirable fibre, but there was an additional independent effect of exposure to fibres.

The changes in lung function are much more strongly related to cumulative exposure to fibres than to exposure to inspirable mass, the effects of inspirable mass become trivial after adjustment for exposure to fibres. Reductions of FEV\(_1\), are confined to smokers, with no effect at all in life long non-smokers. This suggests that the fibres themselves are not directly detrimental to airflow, but promote such effects of cigarette smoke. In summary symptoms related to exposure to both inspirable dust and respirable fibres, and the decrements of FEV\(_1\), seen in smokers are related to the respirable fibre constituent of the exposure.

We thank the European Ceramic Fibre Industries Association (ECFIA) and its scientific committee for supporting this study, and the many staff, employees, and doctors within each plant who provided invaluable assistance with the health and hygiene surveys. We are very grateful to Mr J Dodgson and Dr J Cherrie of the Institute of Occupational Medicine, Edinburgh for their collaboration in undertaking the simultaneous plant hygiene surveys and for their helpful advice. We also thank Dr Alastair Roberson, Dr Burge Berry, and the many others who helped us with the plant surveys both in the United Kingdom and abroad.

Rejected manuscripts

From February 1994, authors whose submitted articles are rejected will be advised of the decision and one copy of the article, together with any reviewers’ comments, will be returned to them. The Journal will destroy remaining copies of the article but correspondence and reviewers’ comments will be kept.
CORRESPONDENCE

Prevalence odds ratio v prevalence ratio—some further comments

Editor,—The effect measure used when presenting results from a cross sectional study is, in general, either the prevalence odds ratio (POR) or the prevalence ratio (PR). Lee and Chia,1 Stromberg,3 Axelson et al,1 and Lee2 discuss the pros and cons of these two effect measures. I would like to give some further comments on this issue.

Axelson et al present hypothetical examples to show that the use of the POR may imply "confounding even when the study base is unconfounded in terms of prevalence data."1 I think that their description is somewhat misleading. As in their example, consider a dichotomous exposure and another dichotomous factor, F, which both affect the prevalence of the study disease. Assume that the fraction of exposure does not depend on F, so F is not a con- founder. Axelson et al use hypothetical data, which when stratified on F, produce stratum specific PRs equal to the crude PR and, of course, the adjusted PR as well, whereas the stratum specific PORs differ from each other and between the stratum the adjusted POR equals a value between those two PORs; this occurs because the exposure specific prevalence ratios with respect to the other factor F coincide. One can also construct an example where the stratum specific PRs differ, whereas the stratum specific PORs are equal, this occurs when the exposure specific PORs for F coincide (table). In that case, the adjusted PR is between the stratum specific PRs, whereas the stratum specific and adjusted PORs are equal, although the crude and adjusted POR may be different. To sum up in other words, these examples show that F may modify the effect of exposure without being a confounder in the conventional meaning; moreover, F may modify the POR and not the PR, and vice versa. Note that, when F does not affect the fraction of exposure, the stratum specific PORs can be equal to each other and still differ from the crude POR (table), whereas this cannot happen when the PR is the effect measure of interest. Effect modification can be examined in the analysis of the data.2

From an aetiological point of view it is often desirable to estimate effects of exposure on incidence of disease. It is sometimes possible to obtain incidence based effect estimates from cross sectional data. For example, under certain stationarity assumptions, a POR can be converted into an incidence ratio.3 The association between prevalence and incidence is derived from a complex theory that is based on more or less restrictive assumptions.4 Most commonly, investigators who apply a cross sectional study design focus on exposure effect on prevalence rather than incidence, as such effect can be directly estimated from cross sectional data. If prevalence is the disease measure at issue, one may argue that the POR is easier to interpret than the PR (Axelson et al1). On the other hand, I do not think that the POR lacks intelligibility (Lee and Chia3) instead of reflecting the ratio of two prevalences, it simply reflects the ratio of two prevalence odds. Furthermore, from a statistical point of view, the POR is preferable to the PR (explained later).

Lee and Chia as well as Axelson et al apply Cox's proportional hazards model for estimating an adjusted PR.1,4 To use a statistical model for estimation, it is fundamental to know what type of dependent parameter the model involves. As is well known, the dependent parameter of Cox's proportional hazards model corresponds to intensity (hazard) and the one of the logistic regression model corresponds to probability. Because prevalence is probability and not intensity, Lee and Chia advocate the use of Cox's proportional hazards model by assuming "constant follow up time."4 They claim that the effect estimate from Cox's model then approximates the relative risk (Lee and Chia use the term rate ratio, whereas Lee5 uses the term cumulative incidence ratio) by referring to Breslow's paper,6 which considers censored survival data. Except for the fact that risk as well as prevalence corresponds to probability, their reasoning is confusing: for example, the assumption "constant follow up time" has no clear meaning in a cross sectional study and the relation between prevalence and incidence (incidence corresponds to intensity) is not the same as the one between risk and incidence. In fact, by replacing a logistic linear model for the prevalence odds—that is, a logistic model—with a log-linear model for the prevalence, as Lee and Chia propose, the prevalence parameter is not constrained to take values between 0 and 1, but above 0.7 Therefore, a log-linear model aimed at directly estimating a PR rather than a POR is not satisfactory. As far as I know, there is no useful statistical model for directly estimating a PR with adjustments for several covariates. Such an estimate can be obtained from the logistic model by a straightforward transformation,8 although further research is needed to provide an appropriate confidence interval estimate.

ULF STRÖMBERG
Department of Occupational and Environmental Medicine
University Hospital,
S-221 85 Lund, Sweden

NOTICES

International symposium on biological monitoring in occupational and environmental health, 11-13 September 1996, Espoo, Finland.

The organizer of the Symposium is the Finnish Institute of Occupational Health. Co-sponsors are the International Commission on Occupational Health (ICOH), Scientific Committee on Occupational Toxicology and Scientific Committee on Toxicology of Metals. The Symposium will be a satellite symposium to ICOH Congress in Stockholm, 15-20 September, 1996 (ICOH '96). The topics will include:

1 Role of biological monitoring in exposure assessment for individuals and groups
2 Biological monitoring in hazard and risk assessment
3 Ethical problems of biological monitoring
4 Use and status of biological monitoring in different countries
5 Criteria for establishing and routine application of biological monitoring methods
6 Biological monitoring of individual chemicals and groups of chemicals
7 Sampling strategies and sampling errors
8 Sample treatment
9 Analytical and instrumental advances
10 In vivo measurements of trace elements
11 Speciation in biological monitoring
12 Kinetic models and their application
13 Sources and implications of intra- and inter-individual variation
14 Interpretation of biological monitoring: Reference values and action levels for occupational and environmental exposure
15 Effect monitoring
16 Role in biological monitoring of methods with limited chemical specificity, such as thioethers or mutagenicity
17 Quality assurance: goals and present status
18 Reference materials
19 Reference and definitive methods
20 Challenge of complex mixtures

For further information contact: Biological Monitoring, c/o Finnish Institute of Occupational Health, Symposium Secretariat, Topeliuksenkatu 41 a A, FIN-00250 Helsinki, Finland. Telephone Int. +358-0-47 471, fax: Int. +358-0-47 47 548 email: sec @acuphealth.fi.

The conference unites people working in environmental epidemiology and exposure assessment to exchange information and synthesize ideas, about the methodology, results and applications of their research. It welcomes epidemiologists, exposure assessors, toxicologists, environmental health officials, and others interested in the field. The focus of this 7th ISEE/5th ISEx conference will be on methodology to improve the assessment of the public health impact of environmental pollution at the (inter)national and regional level. Major symposia are foreseen on the following subjects:

- Integrating exposure assessment and epidemiological methods to improve study design in environmental epidemiology and health impact assessment
- Multi-center studies in environmental epidemiology: methodological aspects, and results of a number of recent studies conducted in Europe and elsewhere
- Uses of exposure assessment and environmental epidemiology in public health at the state, regional, and local level.

The programme will feature a number of oral and poster sessions on, among others, the following themes:

- Monitoring and surveillance
- Biological contaminants
- Exposure assessment
- Air pollution
- Environmental equity
- Risk assessment
- Genetic susceptibility
- Molecular epidemiology
- Water quality
- VOC
- Metals
- Multi-center studies
- Toxicity of health effects
- Pesticides
- Hazardous wastes
- Motor vehicle emissions
- Chronic diseases
- Reproductive health
- Allergy and other immunological effects
- EMF
- Radon

For any inquiries or assistance, please contact the conference secretariat: Ms Susan Peelen, MSc, Department of Epidemiology and Public Health, University of Wageningen, PO Box 238, 6700 AE Wageningen, The Netherlands. Telephone: +31 8370 84124 Fax: +31 8370 82782 e-mail susan.peelen@medew.hgl.wau.nl.

Continuing Medical Education in Europe: the way forward through European collaboration. London. 30-31 March 1995.

Organised by the Fellowship of Postgraduate Medicine, in association with other bodies with an interest in medical education, this conference brings together the leaders of medical education in Europe. The programme is designed to be comprehensive and cover all specialities. It will explore areas of concern including finance, implementation, assessment, and re-certification. Speakers have been invited from all European Union countries and from the USA, Canada and Australia. There will be ample opportunity for free discussion and small group work. The conference language is English.

For further information please contact: Mrs Jean Coops, Conference Office, Fellowship of Postgraduate Medicine, 12 Chandos Street, London W1M 9DE. Tel: 44 (0) 171 636 6334; Fax: 44 (0) 171 436 2535.

BOOK REVIEW

The effects of modern war extend far beyond the immediate casualties and the obvious health effects of exposure to some of the chemical agents used either in defensive or offensive roles. The possibility of there being long term health effects of the herbicides used in the Vietnam conflict was raised at an early stage and has been the subject of many investigations, both medical and scientific. This extensive volume encompasses a review of the pertinent scientific literature and draws conclusions as to the probability of American and allied troops having been affected by the massive spraying operations used in the defoliation of critical tracts of the Vietnamese forest.

The history of the controversy is outlined and indicates how the concerns about the use of Agent Orange developed to include the toxic contaminant 2,3,7,8-tetrachlorodibeno-p-dioxin (TCDD), which had been present in appreciable quantities in the herbicide preparations used at that time. There are summaries of the causes and effects of other environmental exposures to TCDD (at Seveso and Times Beach), which themselves resulted in considerable public concern. If this section of the book has a fault, it is that it relies too much on secondary sources, particularly other books that are not well referenced.

In the chapter that describes the military herbicide programme in Vietnam there is a clear reminder that, whatever the public perception, Agent Orange was but one component of a spectrum of preparations used. Purple, blue, pink, green and white each played their part, whether it be the TCDD contaminant, 2,4-D, 2,4,5-T, picloram or cacodylic acid. In many instances the sections are small or even non-existent. This reflects not the relative usage but the quantity of information available.

A toxicology chapter describes the studies that have been used to determine what effects should be sought in exposed people. Although thorough and generally accurate, there are errors. The statement that a single dose of TCDD cannot induce porphyria may be true for the rat, but is quite incorrect if applied to mice. It is surprising that the papers that would have contradicted this statement were not found in the detailed literature search described in one of the appendices.

In the epidemiological detection of health effects in a potentially exposed population two main factors have particular importance: the design and methodology of the studies and the assessment of exposure. Each of these are well discussed; the methodology section compares the development of exposure indices for Vietnam veterans with the direct analysis in current body lipid concentrations of TCDD and analogues as a measure of past exposure to the herbicides that contain 2,4,5-T. The conclusion that valid exposure indices may be generated from the available records must remain questionable.

The main part of the book is taken up with a review of the epidemiology: the exposure to herbicides environmentally or occupationally in manufacture or usage, the episodes of exposure to TCDD in the general environment or in factories. This is developed in specific sections that consider the health effects identified as having the most cause for concern: cancer, effects on the reproductive system, neurobehavioural disturbance. The conclusions are developed in each chapter and collected together in the executive summary, unsurprisingly, there are little different from those that have been made for each health effect individually in the scientific literature over the past 20 years. What must be remembered is that the association is with herbicides and not necessarily with any one compound in the mixture.

In conclusion, this is a valuable work on studies of the health effects that may be associated with exposure to the constituents of the herbicides used in Vietnam. It could well be read in conjunction with the recent EPA report on the sources and effects of the dioxins analogues. The reference list are as up to date as could be expected and, with some notable absences, provide useful points of entry to the original literature.

J B GREIG