be avoided if our aim is to create a good work environment. The exact meaning of words such as "adverse", "toxic", "disease", or "illness" is important but the process of defining them may not obstruct the improvement of the work environment.


Coal mining, emphysema, and compensation revisited

Editor—Journalists should always check their facts. The same principle presumably applies to higher forms of life. Morgan (1993;50:1051-2) criticises the Industrial Injuries Advisory Council (IIAC) for its decision to recommend the prescription of chronic bronchitis and emphysema for coal miners. He notes, presumably sardonically, that it was "perhaps coincidental" that the IIAC report was sent to the Secretary of State in November 1992, shortly after the announcement of large scale impeding pit closures.

In fact it is plain from the face of the IIAC report that it was sent to the Secretary of State in August 1992—that is, two months before the Government's announcement of pit closures. The report was not officially published until November. Delays of several months between submission and publication are quite usual and so a conspiracy theory (or at least one that implicates IIAC) seems entirely unwarranted. The present writer is not without criticisms of the role of the IIAC but it does help to get one's facts right.

NJ Wikeley
University of Birmingham
Faculty of Law
Edgbaston, Birmingham
B15 2TT, UK

The correction of urinary mercury concentrations in untimed, random urine samples.

Editor—We note with interest the continuing number of reports defining dose-effect relations for occupational exposure to mercury (Hg) that have used urinary Hg concentration in one or a few samples (spot urines) either as a cumulative exposure dose1 or a simple dose index.2

These studies often use spot urinary Hg concentrations readily available from routine biological monitoring strategies in the chloralkali and other Hg utilizing industries. Diurnal variation in the metal's excretion has been noted,3 but the higher concentrations found in morning samples compared with afternoon and evening samples have been suggested as being of no practical relevance in biological monitoring schemes.4 Urinary Hg concentrations are said to reflect integrated exposure over the preceding weeks or months in workers with long term exposure. There has been debate about whether changes in other forms of correction for urinary concentration are better in reducing intra individual variation of urinary Hg and thus making a single spot measurement more closely refe true Hg taken from 24 hour urine samples at the same time of day on each of the working days (five days). The samples from this study were uncorrected or corrected for creatinine concentration or for an SG of 1.016. The mean creatinine concentration in the workers from the within day and between day studies were 58 (4-268) and 32 (6-50) mmol/mmol creatinine respectively. The table shows the calculated mean (SD) and CV of creatinine (CV) and SG (CV) of samples from each of the initial days intraindividual and interindividual days and the comparison by ANOVA of the mean CVs of corrected urinary Hg results with uncorrected results.

Comparison of mean CVs of corrected urinary Hg results with uncorrected results

<table>
<thead>
<tr>
<th>CV</th>
<th>Creatinine corrected mean (SD)</th>
<th>CV</th>
<th>SG (1.016) corrected mean (SD)</th>
<th>CV</th>
<th>Omolality corrected mean (SD)</th>
<th>CV</th>
<th>Uncorrected mean (SD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Within day (10 subjects)</td>
<td>22.7 (7.9%)</td>
<td>32.2 (12.3%)</td>
<td>36.3 (15.1%)</td>
<td>47.3 (22.2%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Between day (10 subjects)</td>
<td>15.6 (7.2%)</td>
<td>22.0 (14.0%)</td>
<td>p &lt; 0.05</td>
<td>37.3 (23.6%)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>