The Authors' reply
Bender is correct. The decimal point in the fibre counts, which were done by light microscopy, moved twixt mind and print. This change does not alter our perception of the conditions of exposure in the plant which emphasise in the same paragraph of the paper that 49% to 83% of the fibreglass used in the plant had diameters less than 5 μm. Most of these would be invisible to light microscopy. Moreover, no dependable relation exists to estimate total airborne fibre burdens from light microscopical counts of fibres with widely variable diameters. This puts Bender’s second point in perspective. In a dense swirl of fibres that are invisible to the light microscope, the asbestos concentrations of 0·1 to 0·25 fibres/ml in four of 14 samples seem of lesser concern when no fibres were detected in the other 10 samples.

This plant was closed shortly after our study so measuring and further modelling was precluded.

Pulmonary effects of exposure to fine fibreglass: irregular opacities and small airways obstruction

Sir,–The paper by Kilburn et al (1992;49:714–20)1 differs only slightly from a previously published version;2 neither of which provides any evidence that “commercial spun rotary fibreglass used for insulating appliances appears to produce human disease that is similar to asbestosis” (authors’ abstract). There are some substantive questions that the authors have not considered but of which they were aware.3

Radiographic changes

Firstly, the authors assume that any appearance of radiographic change, with the International Labour Office (ILO) 1980 criteria,4 shows that the person is suffering from pneumoconiosis. The ILO classification states that it does not define pathological entities and that there are no features seen in a chest radiograph that are pathognomonic of dust exposure. It is descriptive of the chest radiographic appearances. Interpretation of the findings requires other relevant evidence.

This other evidence mainly concerns cigarette smoking. Weiss3 has clearly shown that small irregular opacities are more prevalent among smoking workers unexposed to hazardous dust. Regrettably, Kilburn et al5 2 failed to publish the numbers of smokers, ex-smokers, or non-smokers, although they did publish the numerator numbers of workers with any radiographic change.

It is possible, however, to determine the denominators from the various percentages published by Kilburn et al. Table 1 compares the prevalences of radiographic changes from the current paper with those from the earlier version, and with the prevalences from Weiss.6 The prevalences of Kilburn et al, although differing in their two publications, agree closely with the results from Weiss.4 There could be some slight discrepancy because of the differing definitions of radiographic change. The current rates of Kilburn et al do not include 12 people with small opacities read as category 0/1, but do include 10 workers with pleural changes only. For neither subgroup were smoking data provided. The overall Kilburn et al1 prevalence of any small opacities is 15·8%, very close to the Weiss3 rate of 15·5%. It must be presumed that the pattern of small opacity prevalence by smoking habits for Kilburn et al1 is close to that shown in the table.

The 35 people with radiographic change in the previous version of this paper2 included two with pleural changes only. The pattern of small opacity prevalence by smoking habits for the remaining 33 people must also be close to that shown in the table.

Kilburn denies any association between cigarette smoking and small opacities,4 but these data contradict his own views.

Pulmonary function

The second argument adduced by Kilburn et al for an effect of fibreglass is that the workers’ lung function was reduced significantly. The evidence for such a reduction is based on comparison with a reference group. There are two important issues in relation to the comparison group chosen by Kilburn et al: non-validity of comparison group; and resulting bias.

The prediction equations were developed by Miller et al7 from a small sample, biased towards rural dwellers from Michigan State. Of the 1738 people who actually completed the examinations, 79% were rejected for a variety of reasons. It is impossible to conclude that the remaining 369 white, non-obese, clinically normal, non-extreme people form a valid comparison group. As an example of the effect of the rejection criteria, all smokers aged over 63 years were excluded.

As a result of the exclusion rules, the prediction equations of Miller et al2 are likely to overestimate predicted lung function, with the overprediction increasing with age. For FEV1, for example, the age coefficient of Miller et al for males is −0·0233. This coefficient compares with −0·0292 from Knudson et al8 and −0·033 from Cotes et al.9 At age 25, the prediction of Miller et al is 2% or 9%
higher than that for Knudson et al or Cotes et al. By age 60, the Miller et al. prediction is 10% or 23% higher. If the prediction equations of Knudson et al. had been used, probably none of the predicted values for forced expiratory volume in one second (FEV1) or forced vital capacity (FVC) would have been significantly reduced, even without adjustment for smoking habits. If the equations of Cotes et al. had been used, certainly none would have been significantly reduced.

In the present paper, Kilburn et al. compared the pulmonary function of 17 male current smokers with radiographic changes with that of 39 male current smokers without radiographic changes. In their earlier paper, those with radiographic changes were reported to be on average six years older, but this information is not presented again. The bias in the prediction equations for pulmonary function invalidate this comparison.

Other issues

The text refers to Botham and Holt as showing that “fibreglass also causes peribronchial fibrosis by inhalation.” That paper does not mention peribronchial fibrosis, and indeed it would be unlikely to do so because the study was primarily concerned with inhalation of glass powder for one day, followed up for one month, with some comparison with the effects of exposure to fibrous glass. Kilburn et al. failed to reference any of the long term inhalation studies of fibreglass, none of which has shown any evidence that fibrosis is caused by fibreglass exposure.13,14

The participants in this study were 284 volunteers from the “500 workers with 20 years of exposure to fibreglass.” It is difficult to understand how the average duration of exposure to fibreglass could have been 19-9 years (table 2 from Kilburn et al.),12 Was the selection criterion based on duration of employment rather than on duration of exposure?

The non-smokers had higher prevalences of bronchitis and of asthma than did the smokers, with the ex-smokers having the lowest prevalence. This is so different from other studies that a discussion of this would have been appropriate. The only explanation given is that this “may reflect current and ex-smokers with seniority relocating into jobs with less exposure to fibreglass.” This is hardly an adequate discussion. It is also irrelevant, or if the true selection criterion was based on duration of employment.

CHARLES E ROSSITER

(Emeritus Professor of Occupational Health, University of London), 10 Mynchen Road, Knotty Green, Beaconsfield, Bucks HP9 2AS

3 Personal correspondence between KH Kilburn and CE Rossiter, 1989 and 1990.

