CORRESPONDENCE

Cigarette smoking and small irregular opacities

Sir,—In his letter (1992;49:453–4) Seaton raises an interesting point and touches on another which merits further discussion.

I strongly support his contention that the International Labour Office (ILO) classification should be used for the description of radiographic shadows rather than for diagnosis, although when I read the paper by Weiss (1991; 48:841–4) I took it to mean that the shadows he was reporting fitted into the ILO description, not that he was diagnosing pneumoconiosis from them.

Perhaps confusion comes because the ILO classification is often referred to as “the ILO international classification of radiographs of pneumoconiosis.” People, therefore, thinking, writing, and talking of them sometimes imply diagnosis (of pneumoconiosis) rather than simply a description (of shadows) and, conversely, sometimes where the thinker, writer, or speaker does not intend to imply diagnosis, his reader or listener might infer that he does.

There is another separate issue. In the final paragraph of his letter, Seaton writes, “In Britain, the diagnosis of pneumoconiosis remains a clinical one.” Would that he were right! He goes on to note “the regrettable tendency...now present in medicolegal circles in the United Kingdom and...spreading also to the overinterpretation of computed tomography scans.”

Consider the following:
A patient has worked with asbestos for a number of years. On clinical examination he has no clubbing and no inspiratory crackles. His gas transfer is normal. The chest x-ray film shows no parenchymal changes but pleural plaques or bilateral diffuse pleural thickening are seen. His computed tomography scan confirms the pleural changes but shows also, in the parenchyma, some fine linear markings at the bases that are present in both the supine and prone positions. The radiologist, not unnaturally, interprets these as early fibrosis.

Under the social security legislation in the United Kingdom pneumoconiosis is defined as “fibrosis of the lungs due to silica dust, asbestos dust or other dust. The expression includes the condition of the lungs known as dust-reticulation.”

[Note: no minimum extent of fibrosis is stated.]

The standard of proof required in civil law, including social security legislation, is simply the balance of probabilities. It is argued, therefore, that because this former asbestos worker already has evidence of fibrosis in the pleura it is “more likely than not” (as the lawyers express the requirement of civil as opposed to criminal legal proof) that the radiologist is correct and the small linear shadows are due to fibrosis consequent on his exposure to asbestos. From the statutory definition quoted above, the patient, therefore, has pneumoconiosis due to asbestos.

Again, under United Kingdom legislation, where a diagnosis of pneumoconiosis is made, then an award of not less than 1% disability must be made.2

It does not stop there. The present “Special conditions for disablement benefit for pneumoconiosis...” provide1 that “where on a claim for disablement pension in respect of pneumoconiosis...the disablement is assessed at one percent or more...than disablement pension is payable at least 10%.”

Ergo, it seems that an asbestos worker, with some evidence of consequent pleural disease and without conventional evidence of parenchymal disease (asbestosis), but who has parenchymal changes on the computed tomography scan, however slight, may obtain a 10% disablement award for pneumoconiosis irrespective of any award for pleural disease.

Sir,—Eriksson and Karlsson (1992; 49:95–103) recently reported a case-control study of multiple myeloma in which associations with farming and exposure to some pesticides were found. The study contained men and women and presented risk estimates for both sexes combined.

We recently evaluated agricultural factors and the risk of multiple myeloma in a population based case-control study conducted in eastern Nebraska3 and found surprising sex differences in the results (table). Among men, no increased risk of myeloma was associated with having ever lived or worked on a farm, ever having used insecticides or herbicides, or other agricultural practices. The risk of multiple myeloma was increased over two-fold, however, among women who had ever lived or worked on a farm, and who had ever used insecticides or herbicides on the farm. Nearly every pesticide and pesticide class evaluated was associated with an increased risk of myeloma among women. The number of exposed cases, however, was small and had overlapping exposures, making it impossible to determine whether some specific subset of pesticides was responsible for the apparent associations.

The unexpected sex difference found in this study is difficult to explain. Men, who generally have more direct contact with pesticides on farms than women, experienced lower risks of multiple myeloma. There are no known biological differences in myeloma between the sexes; nor are hormones generally thought to play a part. Plasma cell tumours in mice, however, are stimulated by testosterone4 and multiple myeloma rates are higher in men than women.5 The large risks among women may be a chance finding due to the small number of cases or some systematic bias. We evaluated several sources of bias, however, without finding an explanation. Age differences between cases and controls were not responsible. Potential bias from surrogate respondents did not seem to be a factor because results based on data from next of kin were similar to data from self-respondents. There were only 11 men and seven women who formed the non-farmer referent categories, and fewer than 10 cases of each sex had personally handled pesticides. With these small numbers, either the deficit among men or excess among women could be due to chance.

Interestingly, the only other study to report risks for both sexes for mul-