Correspondence

Anti HBs protection in hospital workers vaccinated against hepatitis B: policy implications of a pilot study

Sir,—Hepatitis B virus infection, a vaccine preventable disease that can cause serious morbidity and mortality, is known to be an occupational risk for health care workers who are repeatedly exposed to blood and body fluids.\(^1\) The recent article by Cockcroft et al\(^3\) confirmed results of other studies of hepatitis B immunisation among health care workers\(^4\) that have yielded antibody response rates of around 95\(^\circ\) or greater. They also confirmed the previously known effect on antibody response of age and of injection site,\(^5\) and suggest that routine post vaccine serology is unnecessary, which is consistent with the recommendations in Canada\(^5\) and the United States.\(^6\) Several important points, however, that were not dealt with by Cockcroft and her colleagues merit consideration.

The long term protection afforded by the hepatitis B vaccine has been questioned,\(^6\)\(^1\) and although the need and timing of booster doses in previously vaccinated persons are not yet known with certainty, Canada’s National Advisory Committee on Immunisation (NACI) has recently recommended one booster dose five years after completion of the initial course of immunisation.\(^7\) Although Cockcroft et al\(^3\) noted an excellent antibody response rate to hepatitis B surface antigen (anti HBs) 12 weeks after three doses of vaccine, they did not show whether adequate concentrations persisted over time. Also, presumably the authors would agree that post exposure serology is warranted in immunised health care workers, as is the general recommendation elsewhere.\(^1\)\(^2\)

The hepatitis B immunisation programme offered to high risk health care workers in our 1100 bed health care facility seems to be equivalent to that proposed by Cockcroft et al\(^3\); specifically, a three dose series (0, one, and six months) of hepatitis B vaccine (Heptavax-B or Recombivax-HB; Merck, Sharp, and Dohme) is properly administered into the deltoid muscle. In 1988 there were 421 individually reported accidental exposures to blood and body fluids, of which 40 were to known positive sources of hepatitis B surface antigen (HBsAg); of these exposed employees, 10 had been previously vaccinated, one of whom had a post exposure non-protective concentration of anti HBs (below 10 IU/l) despite having been vaccinated only 30 months earlier.

A retrospective study was therefore conducted on 60 health care workers (42 women, 18 men) who presented for serological testing either post exposure or as part of a group of dialysis workers concerned about their degree of protection. All had previously completed a properly administered initial course of immunisation within the past six years and were in good health. Their mean age was 37 (range 25–57). The serological testing (1985–9) was performed at the Cadham Provincial Laboratory, Anti HBs were measured by a standard radioimmunoassay procedure (Abbott Laboratories Ltd, Montreal, Canada). Results were interpreted as negative (non-protective) if below 10 sample ratio units (SRU) and positive (protective) if above 10 SRU.\(^1\)

By contrast with the less than 5% non-response rate reported by Cockcroft et al\(^3\) and others\(^4\) within months of completion of the vaccine course, we found that 21.7% (13/60) had inadequate post vaccination anti HBs concentrations. This percentage was higher (29.4%) among persons 40 years or older (5/17). Of 40 staff tested one to five years post immunisation, 10 were found to have non-protective concentrations of anti HBs. In fact, more than 24% (9/37) of vaccinated workers had inadequate anti HBs concentrations within three years of a properly administered initial vaccine course; in at least three cases, protective concentrations had been documented previously, thus indicating loss of antibodies over time rather than primary vaccine failure. This agrees with previous findings.\(^1\)\(^1\)

Importantly, 12 of the 13 subjects found to have inadequate concentrations did respond to a booster.

Because of the high incidence of hepatitis B exposure even in this area of low endemicity, and in view of our findings of the high levels of unprotected state, we believe that the issue of timing of a booster dose is critical. Also, despite small numbers, our findings reinforce the need for post exposure serology. Cockcroft et al\(^3\) tested their cohort some two years ago. It would be useful to know if the high level of antibody response reported has persisted.

A YASSI
M McGILL
S JEANSON
Department of Occupational and Environmental Medicine,
Health Sciences Centre,
Winnipeg, Manitoba R3E 0Z3, Canada
L SEKLA
Cadham Provincial Laboratory,
Winnipeg, Canada


Anne Cockcroft and Paul Griffiths reply:
We read with interest the correspondence from Yassi and his colleagues referring to our paper (1990;47:199–202). We agree that effects of age and injection site have been reported by...
several authors. The new findings in our study were the relation between body mass index and antibody response, and the interactions between this index and injection site and sex. We do, as suggested by Yassi et al, recommend checking antibody concentrations in staff in contamination incidents; this is part of a comprehensive programme of prevention and management of such incidents in our Health Authority.

Yassi et al make a good point regarding the need for more information about the rate of fall of antibody concentrations over time. Particularly, what is required is data to allow prediction of duration of persistence of protective antibody concentrations in subjects after immunisation. The studies reporting mean antibody concentrations at intervals after immunisation do not help much in this regard. We are presently analysing data from our immunisation programme, which includes repeat antibody testing at intervals, with the aim of devising a method of predicting the rate of decline of antibody concentrations. Unfortunately, the data presented by Yassi et al are inadequate for this purpose; only 60 people were studied and antibody concentrations were measured at varying and unspecified intervals up to six years from primary immunisation. No attempt was made to relate the measured concentrations to the concentrations immediately post immunisation, which were apparently known only in some subjects. The lower proportion with "protective" antibody compared with that in our larger study of concentrations immediately post immunisation is not surprising.

It is a cause of concern to note the apparently low coverage among staff reporting contamination incidents, in the hepatitis B immunisation programme reported by Yassi et al. This is despite the fact that 10% of the reported incidents were from known HBsAg positive sources. Achieving a high coverage with hepatitis B immunisation is at least as important as considerations of timing of booster doses.

Role of manmade mineral fibres in the causation of cancer

Sir,—We agree with almost all of the recent editorial by Enterline (1990;47: 145–6). Indeed, the latest update of the American epidemiological studies, of which Enterline is a co-author, make the conclusion of little or no risk in the glass and rock wool production industries even stronger (G Marsh, personal communication). As Enterline points out, any excess of lung cancer is virtually limited to the slag wool production industry more than 20 years ago. Much of the excess mortality in this group occurs among very short term workers (J Hernan, personal communication). Furthermore, the known exposures to asbestos and to other co-exposures in this branch of the production industry are now recognised as being more likely causes of any excess mortality among longer term employees.

Enterline draws the following conclusions:

It is doubtful whether much meaning can be attached to the small excesses among glass wool workers.

There are no excesses in workers in rock wool plants.

Probably fibres do not play the major part in the excess of cancer among slag wool workers so that fibre potency should not be estimated from epidemiological data on workers who produce these fibres.

Given these conclusions, it is surprising to note his final sentence which can be read to imply that exposure to manmade mineral fibres, whether made from rock, slag, or glass, can cause lung cancer. We wonder if certain key words were omitted and suggest that the sentence should read: "There is undoubtedly some evidence of a small cancer hazard attached to the manufacturing process in slag wool plants 20 to 50 years ago, when asbestos was used in some products. Even if glass, rock, or slag wool pose a fibre hazard, it is much less than that of asbestos and perhaps some other kinds of manmade mineral fibres."

CHARLES E ROSSITER
Emeritus Professor of Occupational Health,
10 Mynchen Road,
Knotty Green, Beaconsfield,
Bucks HP10 2AS

DAVID DOUGLAS
Occupational Health Physician,
G3, Park Lane Towers,
1 Boomerang Street,
Sydney 2000, Australia

Author's reply:
Rossiter and Douglas suggest that there may be an inconsistency in my editorial. Whereas it is true that in two large epidemiological studies 20 years from first exposure, respiratory cancer excesses in glass wool plants are small and are non-existent in rock wool plants, I think it is important that the question of whether manmade mineral fibres are capable of causing cancer in man is not dealt with solely on the basis of the existing epidemiological evidence. The usefulness of the data is severely limited because of the extremely low fibre exposures. Because of the likelihood that it is the physical properties of asbestos fibres that cause respiratory cancer, similarities in the physical properties of manmade mineral fibres and asbestos, evidence that manmade mineral fibres are capable of producing cancer in animals, and clear evidence that non-asbestos fibres are capable of producing cancer in man, it would be irresponsible to conclude that ordinary manmade mineral fibres, whether made from rock, slag, or glass, do not carry some risk of cancer.

Rossiter and Douglas also raise the issue as to whether the excess seen in the slag wool plants may have been due to the use of asbestos many years ago. Probably because of the litigation problem in the United States, this has proved to be a difficult area for investigation. Statements from industry have come very slowly and are sometimes contradictory. Recently, however, we have obtained direct evidence of the use of asbestos in one slag wool plant where asbestos was apparently used in a cement mixing operation. In a case-referent study with lung tissue collected from decedents in the United States study we found four of six workers with asbestosis in lung tissue and only one in six matched referents.1 We were also able to obtain lung tissue for five other rock wool or slag wool workers but for only two matched referents. Of the five, three were from a plant in which we have been told asbestos was used and which was originally a rock wool plant. Of these three, two had asbestosis present. In only one of the other five specimens (a referent) was any type of asbestos found. In our latest report for the slag wool plant where four of six specimens contained asbestosis the respiratory cancer standardised mortality ratio (SMR) 20 years from first exposure was 164·3 (23 deaths).2 Asbestos may, of course, have contributed to