Editorial

Possible health effects of working with VDUs

The possibility that working with visual display units may cause adverse effects on health and wellbeing has been intensively studied and debated in several countries. I will attempt to outline the present state of the art concerning this issue.

Because of the widespread use of VDUs rare conditions may appear (in individuals and also in clusters) without any causal relation necessarily being present. Thus the presence—for example, from case reports—of a health effect in a VDU worker is not the issue per se—some indication of association and causality is also required (from comparisons with an appropriate referent group, from intervention studies, from knowledge about known causal factors present where VDUs are used, or a combination of these).

A problem when evaluating some issues is that the information on which the scientific and public debate is based may not have been published in peer review form. Several reviews on the topic do exist; an extensive bibliography is to be found in the WHO publication: "Visual display terminals and workers' health."1

What constitutes "exposure" when working with VDUs?

There has been a shift in the scientific emphasis from "VDU exposure" to "working with VDUs" as motivated by, for example, the considerable difference found in the prevalence of discomfort between workers with different VDU work tasks. Basically, the designation "VDU work" as used in epidemiological studies includes several factors, both those inherently due to the equipment (electromagnetic phenomena, flickering screens, or software design) and those correlated with varying degrees with VDU use (problematic office lighting, physical inactivity, or software function training). Thus some problems may be restated as: "investigation of health effects of factors commonly found in VDU work."

Accordingly, many possible causal factors of adverse health effects exist in VDU work. Some will be considered here including those associated with office work where VDUs based on cathode ray tubes (CRT, common television technology) are used, and those centred on the workplace/work task (excluding many social organisational concerns).

Effects on eyes and vision

There are several different measures of effects on the eyes and on vision including changes in reading performance, transient effects such as discomfort and changes in ocular function, and, finally, the possibility of permanent change or injury to the visual system.

Experimental studies of readability and legibility have generally disclosed poorer performance (reading speed, for example) with VDU displayed text on paper,13 apparently due to combinations of various display and environmental parameters ("display quality"). This is in concordance with the almost ubiquitous finding of an increased frequency of eye discomfort reported among VDU operators compared with office workers who do not use VDUs.14 This is attributed to a combination of VDU and other office visual ergonomic parameters,6-9 one example being excessive luminance contrasts between dark screens and brighter manuscripts.

The prevalence of eye discomfort and visual fatigue varies considerably between operators performing different VDU jobs—with data entry as one "high risk" group.15 In a paper aptly named "the magic of control groups . . . " it is pointed out that the choice of referent group will strongly influence the outcome of the comparison between the groups: there may be circumstances where the "control" group is equally (or more) exposed to poor visual ergonomic conditions than the VDU work group.16 Under "normal" office conditions, however, the introduction of VDUs has often tended to aggravate visual ergonomic problems.

There has been only limited success in determining measurable physiological correlates of eye discomfort17-19. Efforts have largely been directed towards various oculomuscular functions, such as accommodation. Concern is presently limited to transient, reversible conditions such as discomfort, since investigations have failed to find evidence of any lasting damage.1 There is, however, a lack of data concerning
possible long term consequences of prolonged ocular discomfort.

Musculoskeletal effects

There is a high prevalence of musculoskeletal problems among office workers, notably in the neck-shoulder region. Several studies have suggested that this prevalence is increased in some VDU work compared with non-VDU office work.13-18

Muscle problems can be considered as a consequence of a high degree of repetitive movement, posture, or physical activity/inactivity. Some relevant (presumed) causative factors in VDU work are equipment (work station configuration, visual ergonomics, and keyboard construction), type of work and organisation (work task, duration, breaks, and flexibility), as well as individual factors (anthropometry, vision, and control).1

As exemplified by the RSI (repetitive strain injury) debate in Australia, there is uncertainty as to the delineation between discomfort and injury.19 The WHO working group pointed out that while there is a possibility for “injury from repeated stress to the musculoskeletal system,” discomfort does not “inevitably lead to injury [and is not] necessarily a sign of injury.”20

Skin problems

In Norway and Sweden considerable interest has been focused on the possibility of excess occurrences of skin problems among VDU operators. Reports on this are somewhat limited and the summary below relies partly on unpublished reports.

Some epidemiological studies have indicated an excess of skin reactions among female VDU operators, predominantly manifestations of common skin problems, such as acne, rosacea, and seborrhoic eczema.21,22 The mechanisms behind this association have not been identified, although factors such as low humidity or stress, or both, have been suggested. Owing to the failure to find an association between electrostatic fields from VDUs and these skin problems, such fields are not thought to have a causal influence.21,22

Cases of a somewhat different symptomatology (transient rash, tingling) have, however, also been described.23,24 Causal factors for these much less common conditions remain unknown; both physical and psychological factors have been suggested.

Pregnancy outcome

The question as to whether work with VDUs may affect pregnancy outcome has been investigated during the past decade after the reporting of groups of pregnant VDU operators with an unusually high frequency of spontaneous abortion or a high occurrence of serious malformations. These clusters are explicable by chance, given the large VDU work population without assuming the involvement of any specific VDU factor(s).25

An alternative explanation of these clusters would depend on the identification of a plausible causal factor in VDU work from animal studies or from human observations, or both. Attention has lately been focused on either stress or magnetic fields from VDUs. Stress and worry have been indicated but not established as factors leading to spontaneous abortion.26 As for magnetic fields, some unpublished studies have suggested a teratogenic or teratotoxic effect, or both, whereas other (unpublished) studies have failed to indicate such effects.27-30 An ad hoc committee of the Swedish Medical Association drew the following conclusions: “Cell biological and cytogenetic investigations have not been able to show convincing effects of EMF, nor been able to generate plausible models for possible effect mechanisms concerning teratogenic or carcinogenic effects... . Studies of embryonic development have not been able to show specific, unequivocal effects of EMF. The results are partly contradictory and do not show a convincing reproducibility. Therefore they cannot be used for conclusions concerning possible effects of VDU exposure on pregnancy outcome in people.”31

My translation from Swedish, EMF = electromagnetic fields.

Several epidemiological studies on (primarily) spontaneous abortion and serious malformations in pregnancies of VDU operators have also been performed. In general, and specifically in the methodologically reliable studies, no significant difference attributable to VDU work has been established32-35 (and W Butler, American Statistical Association Meeting, Chicago, 1986) (see also reviews36). An exception to this is the recently published “Kaiser Permanente study” from northern California, where a significant excess of spontaneous abortion was found among clerical workers with long VDU work times compared with those without VDU work. In other occupational groups, however, there was a significant decrease among VDU workers with moderate duration compared with those who did not use VDUs. The authors made no definite conclusions as to causal factors from their study but emphasised the possibility of work conditions such as stress or ergonomic conditions, or both.37

The main conclusion to be made is that there is no evidence for an effect of VDU work on pregnancy outcome, implying that either there is in reality no such effect or that if there is the risk increase is so minor as to avoid “detection” by the studies so far.
performed. Based on some findings and deliberations, however, some concern appears warranted regarding certain work conditions such as stress and miscarriages.

Some other effects

In the debate and in (primarily) unpublished reports, some other health problems appearing among VDU workers have been briefly mentioned:

Photosensitive epileptic seizures have been observed in connection with television viewing. For VDU work the effect appears possible but unlikely, due both to some technical differences and to the presumed avoidance of displays by sensitive people.

In a questionnaire study “chest pain” (termed “angina” in the report) was reported more commonly by VDU operators and workers with lower job control. This finding is devaluated by a low response rate (35%) and by the ambiguous meaning of the term chest pain, which apart from cardiac causes could also be due to musculoskeletal or gastroinestinal conditions.

Other suggested effects have been that of struma, breast cancer, and immunological deficiencies (all from unpublished sources). (As for struma, no difference between VDU operators and referents in the percentage who had had medical treatment/examination for struma was found in one investigation.) The (general) lack of current supporting evidence gives a low present credibility to these suggestions.

Stress factors and stress mediated effects

The WHO working group pointed out that “little consistent evidence of abnormal levels of stress related disorders” was found among VDU workers but that “considerable evidence that stress factors associated with that work may create health problems” existed.

Further research is warranted and efforts to improve working conditions in these respects is urged (see the WHO review for further discussion).

Several stress factors occur in some VDU work, some, such as system reliability and response delays, software design, and monitoring being machine system orientated whereas others are more “organisation orientated”—for example, job task changes, manner of VDU system introduction, education, and training. Special interest is often directed towards jobs with quantitative overload, qualitative underload, and lack of personal control and social support—a notable example being routine data entry work.

Stress conditions have already been referred to in relation to several effects considered above: musculoskeletal problems, skin problems, and the discussion on miscarriages. For the first two, there exist both general (as to physiological mechanisms) and VDU specific indications of stress as a marker for or as a link in a causal chain, whereas the situation is less clear as regards risks of miscarriage.

Summary

A summary of the effects presented here is given in the table. The designation “factor present” implies that there is knowledge (from human or animal studies, or both) of a specific factor(s) present in VDU work which may be part of a causal link. The designation “summary statement” gives my conclusions of the association between VDU work and the various effects; the “state of the art.”

Suggestions for “additional” health effects have also appeared but so far generally without supporting or suggesting evidence.

U BERGQVIST
Department of Neuromedicine, National Institute of Occupational Health, S-171 84 Solna, Sweden.

Relation between VDU work and various health effects

<table>
<thead>
<tr>
<th>Effect</th>
<th>Is there an association between VDU work and the effect?</th>
<th>If so, emphasis of causal factors to be found in:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Factor present</td>
<td>Epidemiological evidence</td>
</tr>
<tr>
<td>Eye discomfort</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Eye injury</td>
<td>No</td>
<td>No*</td>
</tr>
<tr>
<td>Muscle problems</td>
<td>Yes</td>
<td>Yes?†</td>
</tr>
<tr>
<td>(Stress reactions)</td>
<td>Yes</td>
<td>Varies</td>
</tr>
<tr>
<td>Skin problems</td>
<td>No</td>
<td>Yes?‖</td>
</tr>
<tr>
<td>Pregnancy outcomes</td>
<td>No*</td>
<td>No?*</td>
</tr>
</tbody>
</table>

*Some credibility of an association with stress and worry.
†Long term consequences of discomfort not investigated.
‡Primarily neck-shoulder region.
§Predominantly dependent on factors not specifically associated with VDU.
‖Tentative yes as to association, scant information as to a causal link.
Editor's note

The recent House of Lords' European Communities Committee has drawn the same conclusions as this editorial. The committee has concluded, therefore, that the proposal to legislate for minimum health and safety standards for users of VDUs throughout the Community should not be pursued.30 The proposed EC legislation would require employers to evaluate the health risks of working with VDUs and to take appropriate remedial action; it would impose minimum standards for equipment such as the display screen, desk, chair, and lighting and for environmental conditions such as noise and humidity; VDU operators would be given the opportunity to have tests of visual acuity and employers would have to pay for special glasses if these were found to be required; and VDU operators would be required to receive training and information about the possible risks to health.

It would seem to us that good employers should be undertaking these tasks as part of their general concern to ensure that the health of their employees is not adversely affected by their work. The principal objection of the House of Lords Committee to the proposal seems to lie in the fact that it would take the form of binding law and they consider that voluntary codes of practice would be more appropriate. We would take the view that the health and safety of those at work may be too important an issue to be left to voluntary effort and that some degree of coercion may still be necessary, even in these so-called enlightened times, to ensure that all employers conform to the best and safest practices.

References

16 Hilberg M, Sundelin G. Discomfort and load on the upper trapezius muscle when operating a wordprocessor. Ergonomics 1986;29:1637–45.
30 Frölen H, Svedenstål BM, Bierke P, Fellner-Feldh€gg H. Upprepade studier av verkan av pulsrande magnetfält på fos- terutveckling hos mus. (Repeated studies of the effect of pulsed magnetic fields on the embryonic development in mice. In
40 North
Likarsdllskapets
39
Jeavons
38
37
Goldhaber
Bergqvist
36
Westerholm
35
Ericson A, Kalln
34 McDonald
Kurppa K, Holmberg PC,
32
Carolina
MK,
Ad
UOV.
comes
correspondence relating
appropriate.
seems
an
absolute
references.
The
published
in the
appearing
material
Correspondence
exponeringfor magnetfalt
A.
during
pregnancy.
units
display
display
causal
birth
defects
state
of
the
risk
cancer
or
eller
(The
Swedish
Medical
Association's
ad hoc
commitee
for evaluation
of possible
causal
relations
between
exposure
to magnetic
fields
and
chromosomal
damage,
cancer
or reproductive
effects.
In
Swedish.)
Stockholm:
Svenska
Likarsdllskapet,
Kurppa K, Holmberg PC,
Rantala K, Nurminen T, Saxén L. Birth
defects
and
exposure
to
video
display
terminals
during
pregnancy.
Ericson A, Källén B. An epidemiological study
of
work
with
video
screens
and
pregnancy
outcome: II. A case-control
study.
McDonald AD, McDonald JC, Armstrong B, Cherry N, Nolin
AD, Robert D. Work with display units
in
Westerholm P, Ericson A. Pregnancy
outcome
and
VDU-work
in
a
cohort
of
insurance
clerks.
In: Knave B, Widebäck PG, eds.
Bergqvist UOV. Pregnancy and
VDU
–
an
evaluation
of
the
state
of
the
art.
In: Knave B, Widebäck PG, eds.
Goldhaber MK, Polen MR, Hiatt RA. The risk
of
miscarriage
and
birth
defects
among
women who
use
visual
display
terminals
during
pregnancy.
Jeavons PM, Harding GFA, Drasdo N, Furlong PLF, Bishop AI. Visual
display
units
and
epilepsy.
Lancet 1985;i:287.
Binnie CD, Kastelein-Noitze
Treunt DGA, De Korte R, Wilkins
A. Visual
display
units
and
risk
of
seizures.
Lancet 1985;i:991.
North Carolina
Occupational
Safety
and
Health. Stress
survey
results.
Schnoor TM, Thun MJ, Halperin WE. Health hazard
evaluation
report
AidT. Southern Bell
and
United
Telephone
North
Carolina. Cincinnati OH: National Institute
for
Occupational
Safety
and
Health, 1986. (HETA 85-452-1698.)
Johansson G, Aronsson G. Stress
reactions
in
computerized
administrative
work.
Journal of Occupational Behaviour 1984;
5:159–81.
Schleifer LM. An evaluation
of mood
disturbances
and
somatic
discomfort
under
slow
computer-response
time
and
incentive-
pay
conditions.
In: Knave B, Widebäck PG, eds.
Waern Y, Rollenhagen C. Reading
text
from
video
display
units
(VDUs).
Galtz WO. Screen
design.
In: Grandjean E, ed. Ergonomics
and
health
in modern
offices.
Kessel KL. Task
analysis
in
applying
software
design
principles.
In: Grandjean E, ed. Ergonomics
and
health
in
modern
offices.
Westlander G. How to identify
organizational
factors
crucial
to
VDU-health.
In: Knave B, Widebäck PG, eds.
Flour R, Cail F. Data entry
task
on
VDU: Underload
or
overload?
In: Knave B, Widebäck PG, eds.
Work with display units 86.
Johansson G. Growth
and
challenge
vs
wear
and
tear
of
humans
in
computer
mediated
work.
In: Knave B, Widebäck PG, eds.
Work with display units 86.
House of Lords Select Committee on the European Communities. Visual
display
units.

Correspondence and editorials

The British Journal of Industrial Medicine welcomes correspondence relating
to any of the
material appearing in the journal. Results from preliminary or small scale studies may also be
published in the correspondence column if this
seems appropriate. Letters should be not more
than
500
words
in
length
and
contain
a
minimum
of
references.
Tables
and figures
should be kept
to
an
absolute
minimum.
Letters are accepted on the
understanding that they may be subject to
torial revision and shortening.
The journal now also publishes editorials
which are normally specially commissioned. The
Editor welcomes suggestions regarding suitable
topics; those wishing to submit an editorial, how-
ever, should do so only after discussion with the
Editor.