Editorial

Possible health effects of working with VDUs

The possibility that working with visual display units may cause adverse effects on health and wellbeing has been intensively studied and debated in several countries. I will attempt to outline the present state of the art concerning this issue.

Because of the widespread use of VDUs rare conditions may appear (in individuals and also in clusters) without any causal relation necessarily being present. Thus the presence—for example, from case reports—of a health effect in a VDU worker is not the issue per se—some indication of association and causality is also required (from comparisons with an appropriate referent group, from intervention studies, from knowledge about known causal factors present where VDUs are used, or a combination of these).

A problem when evaluating some issues is that the information on which the scientific and public debate is based may not have been published in peer review form. Several reviews on the topic do exist; an extensive bibliography is to be found in the WHO publication: "Visual display terminals and workers' health."1

What constitutes “exposure” when working with VDUs?

There has been a shift in the scientific emphasis from “VDU exposure” to “working with VDUs” as motivated by, for example, the considerable difference found in the prevalence of discomfort between workers with different VDU work tasks. Basically, the designation "VDU work" as used in epidemiological studies includes several factors, both those inherently due to the equipment (electromagnetic phenomena, flickering screens, or software design) and those correlated with varying degrees with VDU use (problematic office lighting, physical inactivity, or software function training). Thus some problems may be restated as: "investigation of health effects of factors commonly found in VDU work."

Accordingly, many possible causal factors of adverse health effects exist in VDU work. Some will be considered here including those associated with office work where VDUs based on cathode ray tubes (CRT, common television technology) are used, and those centred on the workplace/work task (excluding many social organisational concerns).

Effects on eyes and vision

There are several different measures of effects on the eyes and on vision including changes in reading performance, transient effects such as discomfort and changes in ocular function, and, finally, the possibility of permanent change or injury to the visual system.

Experimental studies of readability and legibility have generally disclosed poorer performance (reading speed, for example) with VDU displayed text on paper, apparently due to combinations of various display and environmental parameters ("display quality"). This is in concordance with the almost ubiquitous finding of an increased frequency of eye discomfort reported among VDU operators compared with office workers who do not use VDUs. This is attributed to a combination of VDU and other office visual ergonomic parameters, one example being excessive luminance contrasts between dark screens and brighter manuscripts.

The prevalence of eye discomfort and visual fatigue varies considerably between operators performing different VDU jobs—with data entry as one “high risk” group.1 In a paper aptly named "the magic of control groups . . . " it is pointed out that the choice of referent group will strongly influence the outcome of the comparison between the groups: there may be circumstances where the “control” group is equally (or more) exposed to poor visual ergonomic conditions than the VDU work group. Under “normal” office conditions, however, the introduction of VDUs has often tended to aggravate visual ergonomic problems.

There has been only limited success in determining measurable physiological correlates of eye discomfort. Efforts have largely been directed towards various oculomuscular functions, such as accommodation. Concern is presently limited to transient, reversible conditions such as discomfort, since investigations have failed to find evidence of any lasting damage. There is, however, a lack of data concerning
possible long term consequences of prolonged ocular discomfort.

Musculoskeletal effects

There is a high prevalence of musculoskeletal problems among office workers, notably in the neck-shoulder region. Several studies have suggested that this prevalence is increased in some VDU work compared with non-VDU office work.15,16,18

Muscle problems can be considered as a consequence of a high degree of repetitive movement, posture, or physical activity/inactivity. Some relevant (presumed) causative factors in VDU work are equipment (work station configuration, visual ergonomics, and keyboard construction), type of work and organisation (work task, duration, breaks, and flexibility), as well as individual factors (anthropometry, vision, and control).1

As exemplified by the RSI (repetitive strain injury) debate in Australia, there is uncertainty as to the delineation between discomfort and injury.9 The WHO working group pointed out that while there is a possibility for "injury from repeated stress to the musculoskeletal system," discomfort does not "inevitably lead to injury [and is not] necessarily a sign of injury."21

Skin problems

In Norway and Sweden considerable interest has been focused on the possibility of excess occurrences of skin problems among VDU operators. Reports on this are somewhat limited and the summary below relies partly on unpublished reports.

Some epidemiological studies have indicated an excess of skin reactions among female VDU operators, predominantly manifestations of common skin problems, such as acne, rosacea, and seborrhoeic eczema.20,21 The mechanisms behind this association have not been identified, although factors such as low humidity or stress, or both, have been suggested. Owing to the failure to find an association between electrostatic fields from VDUs and these skin problems, such fields are not thought to have a causal influence.22

Cases of a somewhat different symptomatology (transient rash, tingling) have, however, also been described.23,24 Causal factors for these much less common conditions remain unknown; both physical and psychological factors have been suggested.

Pregnancy outcome

The question as to whether work with VDUs may affect pregnancy outcome has been investigated dur-
performed. Based on some findings and deliberations, however, some concern appears warranted regarding certain work conditions such as stress and miscarriages.

Some other effects

In the debate and in (primarily) unpublished reports, some other health problems appearing among VDU workers have been briefly mentioned:

Photosensitive epileptic seizures have been observed in connection with television viewing. For VDU work the effect appears possible but unlikely, due both to some technical differences and to the presumed avoidance of displays by sensitive people.1 29

In a questionnaire study "chest pain" (termed "angina" in the report) was reported more commonly by VDU operators and workers with lower job control.40 This finding is devaluated by a low response rate (35%) and by the ambiguous meaning of the term chest pain, which apart from cardiac causes could also be due to musculoskeletal or gastrointestinal conditions.41

Other suggested effects have been that of struma, breast cancer, and immunological deficiencies (all from unpublished sources). (As for struma, no difference between VDU operators and referents in the percentage who had had medical treatment/examination for struma was found in one investigation.)4 The (general) lack of current supporting evidence gives a low present credibility to these suggestions.

Stress factors and stress mediated effects

The WHO working group pointed out that "little consistent evidence of abnormal levels of stress related disorders" was found among VDU workers but that "considerable evidence that stress factors associated with that work may create health problems" existed. Further research is warranted and efforts to improve working conditions in these respects is urged (see the WHO review for further discussion).1

Several stress factors occur in some VDU work, some, such as system reliability and response delays,42 43 software design,44 46 and monitoring49 being machine system orientated whereas others are more "organisation orientated"—for example, job task changes, manner of VDU system introduction, education, and training.47 Special interest is often directed towards jobs with quantitative overload, qualitative underload, and lack of personal control and social support—a notable example being routine data entry work.48 49

Stress conditions have already been referred to in relation to several effects considered above: musculoskeletal problems, skin problems, and the discussion on miscarriages. For the first two, there exist both general (as to physiological mechanisms) and VDU specific indications of stress as a marker for or as a link in a causal chain, whereas the situation is less clear as regards risks of miscarriage.

Summary

A summary of the effects presented here is given in the table. The designation "factor present" implies that there is knowledge (from human or animal studies, or both) of a specific factor(s) present in VDU work which may be part of a causal link. The designation "summary statement" gives my conclusions of the relation between VDU work and the various effects; the "state of the art."

Suggestions for "additional" health effects have also appeared but so far generally without supporting or suggesting evidence.

U BERGQVIST

Department of Neuromedicine, National Institute of Occupational Health, S-171 84 Solna, Sweden.

Relation between VDU work and various health effects

<table>
<thead>
<tr>
<th>Effect</th>
<th>Is there an association between VDU work and the effect?</th>
<th>If so, emphasis of causal factors to be found in:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Factor present</td>
<td>Epidemiological evidence</td>
</tr>
<tr>
<td>Eye discomfort</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Eye injury</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Muscle problems</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>(Stress reactions)</td>
<td>Yes</td>
<td>Varies</td>
</tr>
<tr>
<td>Skin problems</td>
<td>Yes†</td>
<td>Yes</td>
</tr>
<tr>
<td>Pregnancy outcomes</td>
<td>No*</td>
<td>No*</td>
</tr>
</tbody>
</table>

*Some credibility of an association with stress and worry.
†Long term consequences of discomfort not investigated.
‡Primarily neck-shoulder region.
∥Tentative yes as to association, scant information as to a causal link.
Editor’s note

The recent House of Lords’ European Communities Committee has drawn the same conclusions as this editorial. The committee has concluded, therefore, that the proposal to legislate for minimum health and safety standards for users of VDUs throughout the Community should not be pursued. The proposed EC legislation would require employers to evaluate the health risks of working with VDUs and to take appropriate remedial action; it would impose minimum standards for equipment such as the display screen, desk, chair, and lighting and for environmental conditions such as noise and humidity; VDU operators would be given the opportunity to have tests of visual acuity and employers would have to pay for special glasses if these were found to be required; and VDU operators would be required to receive training and information about the possible risks to health.

It would seem to us that good employers should be undertaking these tasks as part of their general concern to ensure that the health of their employees is not adversely affected by their work. The principal objection of the House of Lords Committee to the proposal seems to lie in the fact that it would take the form of binding law and they consider that voluntary codes of practice would be more appropriate. We would take the view that the health and safety of those at work may be too important an issue to be left to voluntary effort and that some degree of coercion may still be necessary, even in these so-called enlightened times, to ensure that all employers conform to the best and safest practices.

References

30 Frölen H, Svedenåhl BM, Bierke P, Fellner-Feldheg H. Upprepade studier av verkan av pulserande magnethåll på fosterutveckling hos mus. (Repeated studies of the effect of pulsed magnetic fields on the embryonic development in mice. In
Correspondence and editorials

The British Journal of Industrial Medicine welcomes correspondence relating to any of the material appearing in the journal. Results from preliminary or small scale studies may also be published in the correspondence column if this seems appropriate. Letters should be not more than 500 words in length and contain a minimum of references. Tables and figures should be kept to an absolute minimum. Letters are subject to editorial revision and shortening.

The journal now also publishes editorials which are normally specially commissioned. The Editor welcomes suggestions regarding suitable topics; those wishing to submit an editorial, however, should do so only after discussion with the Editor.