Occupational exposure to formaldehyde and histopathological changes in the nasal mucosa

C Edling, H Hellquist, L Ödkvist

From the Department of Occupational Medicine, at University Hospital, S-751 85 Uppsala, and University Hospital, Linköping, Sweden, College of Medicine; King Saud University, Abha, Saudi Arabia, and Department of Otorhinolaryngology, University Hospital, Linköping, Sweden

ABSTRACT To study the cytotoxic effect of formaldehyde on the human nasal mucosa 75 men with occupational exposure to formaldehyde or to formaldehyde and wood dust, were examined, looking particularly at early signs of irritative effects and histopathological changes in the nasal mucosa. All men underwent a medical examination and a nasal biopsy specimen was examined by a pathologist and graded from 0–8 according to the morphological changes. A high frequency of nasal symptoms, mostly a running nose and crusting, was related to exposure to formaldehyde. Only three men had a normal mucosa; the remainder had loss of cilia and goblet cell hyperplasia (11%) and squamous metaplasia (78%); in six cases (8%) there was a mild dysplasia. The histological grading showed a significantly higher score when compared with unexposed contents (2.9 ± 1.8). There was no dose response relation, no malignancies, and no difference in the histological score between those exposed to formaldehyde or to formaldehyde and wood dust.

Formaldehyde is a widely used chemical, primarily in the production of specific resins although it is also used in a variety of other industries and professions, including hospitals and dentistry. Well known toxic effects of exposure to formaldehyde are irritation of mucous membranes and allergic sensitisation of the skin. During the past few years, some controversy has arisen over the possible risk of human cancer posed by exposure to formaldehyde. After long term exposure, mutagenic effects have been shown in vitro and carcinogenic effects in experimental animals.

In view of the finding of squamous cell carcinoma in the nasal cavity of rats and mice exposed to formaldehyde, several epidemiological studies have been undertaken. In some studies an increased risk of cancer has been observed in jobs involving exposure to formaldehyde. Other studies, however, have failed to show such an association.

When discussing a possible risk of cancer not only is the endpoint of interest but also the possibility of the early detection of any precancerous lesions. Most authors consider that cancer caused by exposure to formaldehyde is unlikely in sites other than those in direct contact with the gas. Studies showing an increase of nasal carcinoma among rodents have also shown dose dependent and reversible changes on the nasal mucosa such as rhinitis, epithelial dysplasia, and squamous metaplasia. Some of these irritative effects may be regarded as precancerous lesions and therefore be an early sign of exposure to a carcinogen.

We have studied 75 men occupationally exposed to formaldehyde to look for early signs of irritative effects on the nasal mucosa. Some preliminary results of these studies have already been published.

Subjects and methods

All 104 male workers at three different plants, two processing particle boards, and one laminate, and with occupational exposure to formaldehyde were invited to take part in the study. Those accepting the invitation (72%) underwent a medical examination, which included a nasal biopsy.

By taking a careful history, the exposure time, past diseases, the duration and intensity of different symptoms relating to the respiratory tract and their relation to workplace exposure, and smoking habits were noted. Changes from normal were evaluated in a clinical examination of the nose and nasopharynx.

Biopsy specimens with a diameter of 2 mm were taken with forceps under local anaesthesia 1 cm behind the anterior edge of the inferior turbinate. The specimens were fixed in 10% neutral buffered formalin and embedded in paraffin, cut at various levels, and stained with haematoxylin and eosin. The sections,
Fig 1 Nasal mucosa showing normal cylindric cells with cilia.

Fig 2 Nasal mucosa showing metaplasia where normal cylindric cells have been replaced and there are no cilia.
with covered labels, were examined twice by the
pathologist with an interval of three weeks and
without access to clinical or occupational information.
The morphological grading was carried out using the
system proposed by Torjussen et al.24 (table 1). The
histological findings were compared with a
referred group of 25 men, selected with regard to age
and smoking habits but with no industrial exposure to
formaldehyde.

The differences in histological score between the
groups was tested by the Wilcoxon non-parametric
test.

Hygienic measurements had been made by the
industrial hygienists at the three plants on different
occasions between 1975 and 1983. The levels (TWA)
of formaldehyde in air were in the range of 0·1-1·1
mg/m³, with peaks up to 5 mg/m³. No measurements
were available before 1975 but it was estimated that
the exposure levels had been somewhat higher during
the 1960s and early 1970s. In the two plants processing
particle boards the concentrations of wood dust were
about 0·6-1·1 mg/m³. The working places were
normally ventilated and the workers used no personal
protection.

Results

Seventy five men with a mean age of 38 (range 22–63)

Table 2 Number of subjects, age, exposure period, and
smoking habits

<table>
<thead>
<tr>
<th></th>
<th>Exposed</th>
<th>Referents</th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
<td>75</td>
<td>25</td>
</tr>
<tr>
<td>Age</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>38</td>
<td>35</td>
</tr>
<tr>
<td>Range</td>
<td>22–63</td>
<td>25–60</td>
</tr>
<tr>
<td>Exposure time:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>10–5</td>
<td>—</td>
</tr>
<tr>
<td>Range</td>
<td>1–39</td>
<td>—</td>
</tr>
<tr>
<td>Smokers</td>
<td>26</td>
<td>12</td>
</tr>
<tr>
<td>Ex-smokers</td>
<td>7</td>
<td>4</td>
</tr>
<tr>
<td>Never smokers</td>
<td>42</td>
<td>9</td>
</tr>
</tbody>
</table>

and with a mean exposure to formaldehyde of 10·5
years (range 1–39) took part in the study. Twenty six
(35%) were smokers, seven (9%) ex-smokers (stopped
smoking ten years before examination), and 42 (56%)
had never smoked (table 2). In the referred group, aged
25–60 (mean 35), 12 (48%) were smokers, four (10%)
ex-smokers, and nine (36%) non-smokers.

The histories disclosed a high frequency of symp-
toms relating to the eyes and upper airways. Nasal
symptoms, mostly running nose and crusting related
to the exposure to formaldehyde, were noted in 60% of
the subjects; 75% complained of running eyes when
exposed to formaldehyde. Twelve (16%) mentioned a
history of upper airways allergy.

Clinical examination showed a grossly normal nasal
mucosa in 75% of the cases, whereas the rest of the
exposed workers had swollen or dry changes or both of
the nasal mucosa.

The histological examination (table 3) showed that
only three of the cases had a normal, ciliated pseudo-
stratified epithelium (fig 1). In eight there was a loss of
ciliated cells and goblet cell hyperplasia, in 59
squamous metaplasia (fig 2), and in six a mild
dysplasia. The histological grading showed a signifi-
cantly higher score in the exposed group compared with the referents, 2·9 versus 1·8; p < 0·05 (Wilcoxon).

When relating the histological score to duration of
exposure, the mean histological score was about the
same regardless of years of employment (table 4). Ten
men had been exposed to formaldehyde for more than
20 years and their average histological score was 2·5.
The average exposure time for the six men with “mild
dysplasia” was six years with no dose response
relation. Exposed smokers had a higher (non-signi-
cificant) score than ex-smokers and non-smokers.

To evaluate a possible combined effect of formalde-
hyde and wood dust on the nasal mucosa the men
working in the particle board plants, and consequently
exposed to both formaldehyde and wood dust, were
compared with the workers from the laminae plant,
exposed only to formaldehyde; no difference in the
histological scores was found.
Discussion

The results of this study indicate that occupational exposure to formaldehyde in the range of 0.1–1.1 mg/m³ (Swedish TLV 1.0 mg/m³) may result in pathological changes in the nasal mucosa when compared with non-exposed.

The design of the study is cross sectional and since participation was voluntary and the participation rate only 72% it may possibly be that only people with symptoms from the upper airways took part—that is, there was some selection bias. On the other hand, if people with symptoms caused by the exposure leave the plant a cross sectional design will underestimate the true effect of exposure.

Most of the non-participants (83%) worked shifts at one of the particle board plants and were off work on the days the examination took place. At the two other plants the participation rate was about 90%. To check possible selection effects we undertook a questionnaire survey among the exposed non-participating men at the particle board plant where the number of drop outs was highest (55%). The questions were the same as those asked the other participants; the response rate was 92% and the answers showed no obvious differences in age distribution, exposure time, nasal symptoms, or smoking habits compared with the group studied at the same plant (table 5). These findings suggest that the high frequency of symptoms and histopathological changes found in this study were not due to selection bias overestimating the result.

Another explanation for the findings could be that the unexposed reference group was too healthy and had an unusually low score. The average score of 1.1, however, is higher than that of 1.3 found in the non-industrial reference group of 45 subjects used by Torjussen et al. This indicates that our reference group is representative of the non-industrially exposed population.

Similar pathological changes of the nasal mucosa have earlier been reported as due to age, smoking, and various types of occupational exposures including wood dust, nickel, oil mist, solvents, and dicumylperoxide. In the present study the influence of age and smoking was controlled by the similarity between the exposed and referents in this respect and occupational factors other than formaldehyde and wood dust could be ruled out. Since there were no differences in average histopathological score between the groups exposed to both formaldehyde and wood dust and the group exposed only to formaldehyde we interpreted the histopathological changes as due to exposure to formaldehyde. Blair et al have suggested that simultaneous exposure to formaldehyde and particulates may increase the risk of tumour but in this study exposure to wood dust does not seem to enhance the effect of exposure to formaldehyde. Smoking may have a modifying and aggravating effect on the histological picture which is reflected in a higher mean histological score for smokers despite the same duration of exposure to formaldehyde as those who have never smoked.

In animal experiments formaldehyde has been shown to induce nasal cancer at rather high exposure levels, 5–14 ppm. The tumours show a sharp concentration response relation with none occurring in the 2 ppm group. At that exposure level, however, epithelial dysplasia and squamous metaplasia were found, the same histopathological changes as found in this study.

When considering the carcinogenic response to formaldehyde it has been discussed whether it is an epigenetic or a genetic reaction. The epigenetic reaction is due not to the reaction of the chemical with DNA but to the overload of the normal DNA repair mechanism. The important difference in epigenetic, as opposed to genetic, mechanisms is that in a genetic mechanism there is a potential, no matter how small, for response at any exposure level. An epigenetic mechanism, however, implies a threshold level below which there is no response. The animal data on formaldehyde toxicity suggest that it is an epigenetic agent and that formaldehyde induced metaplasia is an irritant response. This may explain why we did not find a dose response relation; the histopathological changes were of the same degree regardless of exposure time as long as it exceeded a couple of years. This is also in accordance with the animal findings that exposure to high concentrations for a few hours is

| Table 4 Average histological score of exposed workers in relation to years of employment |
|---------------------------------|------------------|------------------|------------------|
| Employment (years) | ≤ 5 | 6–10 | > 10 |
| No of men | 23 | 28 | 24 |
| Average score | 2.7 | 2.8 | 2.9 |

| Table 5 Number of men, age, exposure period, smoking habits, and frequency of symptoms of participants and non-participants at one particle board plant |
|---------------------------------|-----------------|-----------------|
| | Participants | Non-participants|
| No | 20 | 22 |
| Age (mean) | 38 | 36 |
| Exposure time (mean) | 6 | 7 |
| Smokers (%) | 50 | 35 |
| Ex-smokers (%) | 36 | 45 |
| Never smokers (%) | 14 | 20 |
| Symptoms, eyes (%) | 73 | 85 |
| Symptoms, nose (%) | 68 | 70 |
| Symptoms, throat (%) | 59 | 75 |
Occupational exposure to formaldehyde and histopathological changes in the nasal mucosa

likely to cause greater damage to the mucosa than longer exposures at lower concentrations. We have not been able to study the question of reversibility but if the effect is that of an irritant one might expect a change towards normal after the cessation of exposure.

Milder changes in the nasal mucosa lead to more or less severe symptoms but no serious illness, whereas higher degrees of alterations in the mucosa, such as dysplasia, should be considered to be precancerous.21 In a study of workers exposed to nickel, a recognised occupational nasal carcinogen, Torjussen et al found dysplasia in 22% of the exposed compared with 8% in the present study.24 In that study the workers with the longest period of employment had the highest average score.

This study indicates that dysplastic changes similar to those observed in animal studies may be present among workers exposed to low levels of formaldehyde. The present results, however, with those of the animal and epidemiological studies (cf Partanen et al30) suggest that the risk of nasal cancer for man, if any, is small when exposure levels are kept well below 2 ppm. This view is further strengthened by the results of the study from 26561 industrial workers exposed to formaldehyde in the United States, where no excess mortality from cancer of the nasal cavity was found,28 although further analyses of these data have indicated a dose dependent association of nasopharyngeal cancer with exposure to formaldehyde and particulates.31

The study was supported by the Swedish Work Environment Fund.

References

