Gastric cancer in coal miners: a case-control study in a coal mining area

G M H SWAEN, C W H M AERDTS, F STURMANS, J J M SLANGEN, AND P KNIPSCHILD
From the Department of Epidemiology, University of Limburg, 6200 MD Maastricht, the Netherlands

ABSTRACT In collaboration with three pathology departments a case-control study was conducted in the southern part of the Netherlands to investigate the risk of gastric cancer in coal miners. Between 1 January 1973 and 31 December 1983, 323 male patients were diagnosed as having a malignant neoplasm of the stomach. For each case a control was selected from the same pathology department, matched on year of birth and regardless of diagnosis. The archives of the Central Coal Miners Pension Fund were searched to obtain information about whether or not a patient had ever worked for a coal mining company in the Netherlands. Twenty two per cent of the patients had been registered as an underground coal miner, compared with 20% of the control group (odds ratio of 1.14, 95% confidence interval: 0.33–1.73). Those with gastric cancer who had ever worked underground in a coal mine did so for an average period of 16.9 years compared with an average of 19.7 years in the control group. The study gives no indication that the underground workers of the Dutch coal mines had a raised risk of developing a malignant neoplasm of the stomach.

Coal is of great importance to our industrialised society and will remain so in the near future. It is a major energy source for electrical power stations. Specific coals or mixtures may be carbonised into coke, which is indispensable for the iron and steel industry. Although the number of coal miners has decreased substantially during the past decades, many still work in underground coal mining all over the world. In 1983 about 300 000 workers were employed in underground coal mining operations in the European Community. Various carcinogenic substances have been identified in coal, such as benz(o)pyrene and benz(a)anthracene derivatives, but also inorganic carcinogens such as arsenic, cadmium, and chromium. It has also been postulated that dust in general is a risk factor for gastric cancer.

Inhaled coal dust reaches the gastrointestinal tract by the pulmonary clearance system, in which the bronchial mucus is moved upwards towards the pharynx and then swallowed. Some investigators have noted a high incidence or mortality of gastric cancer in coal mining areas. In a coal mining region in Utah, United States, the incidence of gastric cancer was three times that of the rest of the state. In a repeat study five years later, however, this high incidence of gastric cancer did not show up. The investigators concluded that, "the previous suggestion that the high incidence of gastric cancer could be related to frequent exposure to coal carrying hydrocarbons appears to be unwarranted." A British investigation also showed a positive relation between the incidence of gastric cancer and the dusty coal and textile industries, a relation reported earlier by Stocks and by Enterline in the United States. Enterline reported a standardised mortality ratio of 275 for gastric cancer in coal miners. In the United States a large follow up study of 23 000 coal miners was conducted. This 10% sample of all coal miners covered by the United Mine Workers Health and Retirement Fund on 1 January 1959 was followed up until 1971. During the follow up period, 129 died from gastric cancer compared with 92 expected. The investigator concluded that, "elevated gastric cancer is the third most consistent mortality finding for coal miners behind accidents and pneumoconiosis mortality."

In a recent listing of carcinogenic agents and occupations coal mining was classified as an occupational group associated with a raised risk for gastric cancer. Some investigators have drawn attention to the possible confounding effect of other factors that...
Table 1  Distribution of the control group over eight broad disease categories

<table>
<thead>
<tr>
<th>Disease category</th>
<th>No of controls</th>
</tr>
</thead>
<tbody>
<tr>
<td>No abnormality</td>
<td>62</td>
</tr>
<tr>
<td>Circulatory diseases</td>
<td>15</td>
</tr>
<tr>
<td>Respiratory diseases</td>
<td>31</td>
</tr>
<tr>
<td>Digestive diseases</td>
<td>83</td>
</tr>
<tr>
<td>Urogenital diseases</td>
<td>68</td>
</tr>
<tr>
<td>Diseases of skin and limbs</td>
<td>48</td>
</tr>
<tr>
<td>Diseases of internal secretion and sensory organs</td>
<td>2</td>
</tr>
<tr>
<td>Other diseases</td>
<td>14</td>
</tr>
<tr>
<td><strong>Total</strong></td>
<td><strong>323</strong></td>
</tr>
</tbody>
</table>

Bias may occur if the control group consists largely of patients with diseases that are also related to coal mining. In the control group, however, there were no patients with diagnosed pneumoconiosis, although they had not been omitted by us. Table 2 gives the distribution of the controls over eight disease categories.

For all 646 patients enrolled in the study, information was obtained about underground mining work through the files of the General Mining Fund, which is a collaborative pension and disability fund for all Dutch coal mines. Each worker of the Dutch coal mines had to pay dues to this fund from his salary. Records of these payments have been accurately kept, since the retirement benefits of the coal miners depended on them. These records still exist for all workers who were employed by the Dutch mining companies and available for this study. For each person in the study the files of the General Mining Fund were searched in a standard manner. The first personal identification used in this search was the date of birth. In the case of a match on this variable the family name was compared. To check the accuracy of the collected dates of birth, the first 500 patients were checked with the population registries. Of these 500 patients, only one had a wrongly recorded date of birth. Errors in the spelling of the family names have not resulted in an underestimation of exposure, since even if the name of the patient was spelt incorrectly we were able to find his file at the General Mining Fund and subsequently obtain information about the occupational exposure to coal dust.

Results

For all 323 cases and 323 controls the archives of the General Mining Fund were searched. Table 3 shows the distribution of underground coal miners as they were observed in the 323 pairs.

The odds ratio and the 95% confidence limits were calculated by the Mantel and Haenszel method for matched pairs; from the data given in table 3 a value of 1.14 (95% confidence limits: 0.34–1.73) gives the distribution of the controls over eight disease categories.

Material and methods

Altogther 323 male cases of gastric cancer were obtained from three pathology departments located in the area. The cases were all histologically confirmed between 1 January 1973 and 31 December 1983. For each case a control was selected from the same pathology department with approximately the same date of birth. The controls were matched on date of birth in order that both cases and controls would have had an equal chance of working in a coal mine. Since the number of coal miners varied greatly through time, the date of birth of the cases and controls a priori influences the chance of having been a coal miner in the past. The average difference between the dates of birth for each matched pair was 30 days. The controls were selected regardless of their diagnosis. Table 1 gives
Gastric cancer in coal miners: a case-control study in a coal mining area

Table 3  Distribution of underground coal miners within 323 matched pairs of cases and controls

<table>
<thead>
<tr>
<th>Controls</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>With history of underground coal mining</td>
<td>Without history of underground coal mining</td>
</tr>
<tr>
<td>Cases:</td>
<td></td>
</tr>
<tr>
<td>With history of underground coal mining</td>
<td>24</td>
</tr>
<tr>
<td>Without history of underground coal mining</td>
<td>42</td>
</tr>
<tr>
<td>Total</td>
<td>66</td>
</tr>
</tbody>
</table>

was obtained. To investigate the existence of a dose response relation a break down was made by duration of underground coal mining work (table 4).

The distribution of cases over the underground categories of underground coal mining did not differ from the controls and the average duration of underground coal mining for the controls was, in fact, longer than for the cases (19-7 years for the controls compared with 16-8 for the cases).

Discussion

Previous epidemiological studies of the risk of gastric cancer among coal miners have been contradictory. Some studies have supported this hypothesis and some have not. The distribution of other factors that play a part in the etiology of gastric cancer may account for these discrepancies. One of these factors, social class, is inversely related to the risk of gastric cancer.\(^1\) \(^1\) Information about social class for the individual cases and controls in this study is not available. Nevertheless, it is known that the Dutch coal miners as a group earned less than the average employee before 1947 (L Kreukels, personal communication, 1984), and 79% of the coal miners in our study were employed underground before 1947. If social class had affected the findings of our study it is more likely to have resulted in an overestimation of the risk of gastric cancer rather than an underestimation. Another factor that could have influenced our results is diet since some nutritional constituents are suspect of having carcinogenic properties.\(^1\) \(^1\) We did not collect information on the diet of our subjects and thus cannot exclude diet as a possible confounder in this study. Nevertheless, the risks for gastric cancer associated with dietary factors are small and, in order to function as a confounder, the diet of the coal miners must have differed greatly from that of the general population and must have had a preventive effect.

Further studies of the risk of gastric cancer and exposure to coal dust are needed, and we think that it is premature to regard exposure to coal dust as a risk for gastric cancer in man.

We are indebted to the staffs of the pathology departments of Brunssum, Kerkrade, and Maastricht for their collaboration in the study and to the staff of the “AZL Heerlen,” manager of the General Mining Fund for their collaboration and helpful instructions during the study. The study was financially supported by the Queen Wilhelmina Fund in Amsterdam.

References

13. Creagan ET, Hoover RN, Fraumeni JF. Mortality from stomach
cancer in coal mining regions. 


# Vancouver style

All manuscripts submitted to the *Br J Ind Med* should conform to the uniform requirements for manuscripts submitted to biomedical journals (known as the Vancouver style).

The *Br J Ind Med*, together with many other international biomedical journals, has agreed to accept articles prepared in accordance with the Vancouver style. The style (described in full in *Br Med J*, 24 February 1979, p 532) is intended to standardise requirements for authors.

References should be numbered consecutively in the order in which they are first mentioned in the text by Arabic numerals above the line on each occasion the reference is cited (Manson confirmed other reports). In future references to papers submitted to the *Br J Ind Med* should include: the names of all authors if there are six or less or, if there are more, the first three followed by et al; the title of journal articles or book chapters; the titles of journals abbreviated according to the style of *Index Medicus*; and the first and final page numbers of the article or chapter.

Examples of common forms of references are:

