that the victims of radiation hazards are to be expected neither among radiographers nor atomic energy workers but among non-coal miners! Could there be a better illustration of the value of regular monitoring of the working environment?

M. J. Day.


It was not unexpected that the smallpox escape in London which resulted in the death of two outside contacts would lead to an inquiry into the use of dangerous pathogenic organisms in laboratories. Even without this event to focus attention, it was timely to consider the problem in view of the growth in recent years of institutions not primarily concerned with the routine diagnostic and research responsibility for handling such organisms, who nevertheless under current legislation could acquire and use them independently.

The report of the working party is divided into five sections and has four appendices. All aspects of the problem are considered in detail. The committee compiled a list of some 70 pathogens which they divided into two categories: 'A, organisms so dangerous as to present great risk to the health either of laboratory workers or of the human or animal communities such that material containing live organisms should not be accepted knowingly, or held at all in this country without authorization', and 'B, organisms which present considerable danger to laboratory workers and/or animals but are either present in the human or animal communities or are not likely to cause epidemics. They should be held only in a laboratory under the supervision of suitably qualified staff'. The working party assessed the size of the problem by circulating a questionnaire to laboratories, universities, and research departments to determine which species of pathogens on the list were held by individual laboratories. They discuss existing codes of practice, in particular 'Safety in Pathology Laboratories' compiled by the Department of Health and Social Security in 1972, note the potential hazard posed by genetic engineering and review the existing legislation relevant to the problem, such as the Health and Safety at Work Act.

Finally, the working party make specific recommendations for the handling of dangerous pathogens in laboratories. These recommendations are adequate and attainable without being excessively restrictive or impracticable. Thus in essence the report defines a comprehensive list of organisms considered to be of special importance in laboratories, formalizes the responsibility for their control, and advises on how best this may be done. Heads of all laboratories handling dangerous organisms and other interested parties such as doctors in environmental health should have a copy of this report and study it carefully.

A. A. Codd


The International Social Security Association whose members are drawn from government departments and other institutions has among its aims the publication of documents on social security and a permanent committee on the Prevention of Occupational Risks. This has several sections, one of which aims to make research involving experimental work on occupational hazards and prevention more widely known.

This book is a new English language edition of a volume first published in French in 1971. The information is based on replies to questionnaires issued in 1973 so that it is inevitably out-of-date in some respects. However, this is probably not a serious drawback as much of the important information it provides is likely to be correct for some time yet. There is a very useful index of the materials and subjects covered by various research institutes and organizations, which themselves are indexed by type of activity and field of study. Research workers are also indexed by name and there is a geographical index. As a directory it is a good source of information for workers seeking to know where certain interests lie or for travellers to other countries who wish to plan a series of visits related to their own research interests. Any research group with an international outlook would find this directory very useful.

R. I. McCallum


Most of the chapters of this textbook, designed primarily for toxicological courses, were written by eminent experts. Their experience ensures a readable style which by contrast makes irritating the occasional imperfections, slips, and the absence of active editorial work. There are duplications, for example in the metabolism of pesticides, or the deposition and clearance of particles. The 42-page table on air pollutants could be omitted without any loss, as could more than 80% of the chapters on the skeletal and reproductive systems which are unrelated to toxicology. In the same chapters the authors omit to mention many important toxicological facts, for example: Ita Ita disease, skeletal fluorosis, the radiological signs of lead deposition, the ovarian effect of cadmium. In the chapter on metals there are sentences like: 'The demonstration that beryllium can induce tumours, especially by the probable route of human exposure, is indeed incriminatory'. There are several factual errors: lead in the bone is in equilibrium with free lead in the plasma; doses given in mg/kg but not in mol/kg fit the probit regression line; atropine is a competitive inhibitor of AcChE inhibitors; arsenic and fluoride are heavy metals and CO is a volatile agent; the dose effect relationship is defined as dose response relationship; the definition of absorption does not fit the use of this term by the same author. In the chapters by Professor Casarett, who died before the book was completed, there are wrongly drawn figures.

In spite of these shortcomings this textbook helps the reader to a better understanding of the mechanisms of toxicological research and gives him a critical approach to toxicological literature. The first unit of the book discusses the general principles of toxicology. The second unit is a successful presentation on systemic toxi-