Report of the Advisory Committee on Asbestos Cancers to the Director of the International Agency for Research on Cancer

In 1964 the Geographical Pathology Committee of the International Union against Cancer (UICC) set up a working group on asbestos and cancer and later issued a Report and Recommendations (1965). A further meeting was held at the International Agency for Research on Cancer (IARC), Lyon, France, on 5 and 6 October 1972. This was organized jointly with the Medical Research Council Pneumoconiosis Research Unit. The report and recommendations given here will also be published by IARC in 1973, together with the complete proceedings of the meeting. The Committee consisted of three panels—Epidemiology, Pathology, and Physics and Chemistry.

The panels met in separate sessions and at the final session (Chairman Dr. J. C. Gilson) prepared this report to the Director of the International Agency for Research on Cancer.

Terms of reference
1. The Committee was to report on the present evidence relating exposure to asbestos dust to cancers, especially that obtained since the meeting of the UICC Working Group on Asbestos Cancers in 1964.
2. The Committee was to make recommendations for further research and indicate priorities for work of immediate and long-term value.

Co-ordination of international co-operation
Following the meeting of the UICC Working Group on Asbestos and Cancers in 1964, a sub-committee of the UICC Commission on Geographical Pathology and Environmental Carcinogens (Chairman Dr. J. Higginson) was formed to co-ordinate work required to achieve the recommendations.

In April 1970 agreements between the UICC and the IARC led to the winding up of the UICC sub-committee and the IARC taking on responsibility for the sub-committee's work and extending it by supporting certain projects on asbestos cancers in several countries. The Agency has done this as part of their wider programme of investigating environmental carcinogens. Common memberships between the UICC sub-committee and the committee advising the IARC ensured continuity of policy.

In October 1972 the IARC held an international conference with 137 participants from 20 countries to review all the evidence relating asbestos to cancers. Subsequently the Advisory Committee prepared its report which is divided into two sections, first, a general review in the form of answers to a number of important general questions about the relation of asbestos to cancers of different sites and, secondly, recommendations for further research.

General review
1. Are all major commercial types of asbestos able to cause lung carcinoma?
 Yes. Since 1964 the evidence of a causal relationship has been increased by epidemiological studies showing exposure-response relations for the incidence of lung carcinomas. The production of lung carcinomas in certain animals by all types of asbestos supports this conclusion. The epidemiological evidence in man, however, shows that there are clear differences in risk with type of fibre and nature of exposure.
2. Is there evidence of an increased risk of lung carcinoma at low levels of exposure to asbestos, such as have been encountered by the general population in urban areas?

The evidence of an exposure-response relationship based in part on past dust measurements and in part on the type of job within the industry suggests that an excess lung carcinoma risk is not detectable when the occupational exposure has been low. These low occupational exposures have almost certainly been much greater than that to the public from general air pollution.

3. Since 1964 has the evidence relating past exposure to asbestos and mesotheliomas changed?

The evidence has been greatly strengthened by further prospective and retrospective mortality studies in many countries of populations exposed to asbestos. There is evidence that all commercial types of asbestos except anthophyllite may be responsible. Evidence for an important difference in risk in different occupations and with the type of asbestos has increased. The risk is greatest with crocidolite, less with amosite, and apparently less with chrysotile. With amosite and chrysotile there appears to be a higher risk in manufacturing than in mining and milling. There is also evidence from population studies that a proportion of cases of mesothelioma have no known association with exposure to asbestos.

4. Is there evidence of an increased risk of mesothelial cancers at low levels of exposure to asbestos, such as have been encountered by the general population in urban areas?

There is evidence of an association of mesothelial tumours with air pollution in the neighbourhood of crocidolite mines and of factories using mixtures of asbestos fibre types. The evidence relates to conditions many years ago. There is evidence of no excess risk of mesotheliomas from asbestos air pollution which has existed in the neighbourhood of chrysotile and amosite mines. There are reported differences on incidence of mesothelioma between urban and rural areas, the causes of which have not been established. There is no evidence of a risk to the general public at present.

5. Since 1964 has the evidence changed on the importance of other factors such as cigarette smoking, waxes, oils, and trace elements as contributory factors to the cancer risk?

The evidence has accumulated indicating:

(1) Cigarette smoking is an important factor enhancing the lung carcinoma risk in asbestos-exposed workers, in both men and women. Asbestos workers have specially strong grounds for giving up smoking to protect their health. No association has been demonstrated between cigarette smoking and mesotheliomas.

(2) Animal experiments designed thus far to test the importance of waxes and oils as contributory factors in the production of mesothelioma have shown that these contaminants are unlikely to be relevant.

(3) From animal experiments there are no good clues suggesting that trace elements are likely to be a major factor in the production of asbestos cancers.

6. What other types of cancer are related to exposure to asbestos?

Prospective surveys of occupational groups exposed to asbestos have in general shown a small excess risk of some other types of cancers (in addition to bronchial and mesothelial), especially those of the gastrointestinal tract. The excess of these tumours is relatively small compared with that for bronchial cancer. Evidence for an association with ovarian tumours has not been supported by the first large mortality survey of women previously exposed to asbestos.

7. Is there evidence of an increased risk of cancer resulting from asbestos fibres present in water, beverages, food or in the fluids used for the administration of drugs?

Such evidence as there is does not indicate any risk.

8. Is there evidence of a risk of lung fibrosis from low levels of exposure to asbestos such as have been encountered by the general population in urban areas?

There is at present no evidence of lung damage by asbestos to the general public. The amount of asbestos in the lungs of members of the general public is very small compared with the lungs of those occupationally exposed. It is greatest where asbestos is mined or worked and lowest in rural areas.

9. Has the relationship between asbestos exposure and the development of pleural plaques been established?

Pleural plaques have been associated with past exposure to all commercial types of asbestos. But additional factors, other than asbestos itself, are involved. The plaques may remain fibrous or become calcified. Not all pleural plaques are associated with asbestos.

Recommendations for further research

Projects which the panels rated high in priority are marked *; those which will require close co-operation between the Panels are marked †.

Epidemiology

The panel agreed that asbestos-related cancers occur in several sites in the body. The incidence of the different cancers varies with a number of definable factors and for other reasons, such as competing causes of death. Epidemiological studies will usually
provide information on more than one type of cancer. Research directed at only a single type may, on occasions, be useful, but in general the inevitable uncertainties, in some cases in the differential diagnosis of, for example, peripheral lung carcinomas and pleural mesotheliomas, and between peritoneal mesotheliomas and other intra-abdominal cancers, will require that more than one type is studied at the same time.

The panel recognized that some of the epidemiological projects could be pursued only if there was close co-operation between epidemiologists, pathologists, physicists and chemists, and others, because their success will depend upon the development of improved techniques, some of which are referred to in the recommendations of the other two panels.

Projects

(1) Further development of objective methods for early detection and surveillance of effects caused by asbestos: Topics for particular study include

(a) immunological techniques for screening for fibrosis and neoplasia,
(b) functional tests of changes in the peripheral airways,
(c) detection of pleural thickening,
(d) assessment of the specificity of small irregular opacities in the chest radiograph as defined in ILO U/C Classification, 1971,
(e) tests of the usefulness of different techniques of chest radiography, including the use of 100 mm films,
(f) development of statistical procedures for analysis and presentation of serial observations.

(2) Evaluation of the usefulness of early detection in the prevention of progressive fibrosis and asbestos cancers, also in the identification of hazardous conditions. Routine health surveillance of industrial populations should be designed to assist epidemiological studies and should include measurement and recording of environmental dust levels. Surveillance of new entrants could be particularly valuable. Arrangements should be made to register workers so that their morbidity and mortality experience can be studied even after cessation of exposure to asbestos.

(3)* Assessment of excess cancer risks following exposure to only one type of fibre:

(a) Chrysotile The much higher cancer risk reported for chrysotile textile workers compared with mine and mill workers requires explanation. How much is explicable by differences in size of airborne fibres and past dustiness? There is need to make more use of past dust records for relating to indices of disease.

(b) Amosite The excess lung carcinoma and mesothelioma risk is apparently much greater in the manufacturing and application sections of the industry than in the mining and milling of this type of fibre. What are the important factors in this reported difference?

(c) Crocidolite Further studies are required in occupational groups exposed only to crocidolite or amosite or chrysotile in manufacturing and application parts of the industry to establish more clearly differences in risks due to different fibres.

(4)*† Studies of the amount and type of asbestos in the lungs of cases of mesothelioma (if possible by cell type) in (a) a national survey of mesotheliomas, and (b) representative samples of cases arising in groups with a definable past exposure.

(5)* Studies of secular changes in the incidence of pleural and peritoneal mesotheliomas nationally and internationally.

(6)* Epidemiological studies to investigate the association between past exposure to asbestos and cancer of sites other than lung, pleura, and peritoneum.

(7) Studies of secular trends in the asbestos content of the lungs in the general population.

(8)*† Studies to relate amount and type of asbestos in the lung and estimates of past dust exposure and interval since last exposure.

(9) Experimental and epidemiological studies to investigate possible differences in effect of continuous low and intermittent high exposure to asbestos.

(10) Opportunities afforded by intercurrent deaths should be used to interrelate radiographic appearances, lung pathology, respiratory function, and dust content and type in asbestos workers. Standardized techniques and classification recommended by the panels should be used.

(11) Investigation of the prognostic significance and aetiological factors in the development of calcified and uncalcified pleural plaques in different environments.

(12) Investigation of talc-exposed groups in mining and manufacturing to establish any differences in morbidity or mortality which might be related to the amount and shape of the fine respirable particles.

(13) Development of cost/benefit analyses to study the health, safety, social, and economic interrelations of the use of asbestos.

Pathology and experimental pathology

The panel reviewed the progress made on the 1964 UICC recommendations. It was agreed that considerable progress had been made on the majority of the recommendations. Some require further study, or modification of previous methods of investigation; these are included in the list of recommendations that follows. The recommendations are divided into
three categories: morbid anatomy and histology, clinical research, and experimental studies.

Morbid anatomy and histology

Projects

1. Asbestosis

(1)* Further consideration should be given to methods for determining the amounts, types, and structural features of asbestos in tissue. A subcommittee should be established with members of the Physics and Chemistry Panel and others to accelerate work on this problem.

(2) The methods for assessing the severity of asbestosis should be tested for consistency by different observers.

2. Carcinoma

(1)*† An investigation of whether reduction of asbestos exposure to levels below those producing asbestosis also abolishes excess risk of carcinoma was considered important.

(2) A comparison of lung carcinomas in persons occupationally exposed to asbestos and those not so exposed, including both cigarette smokers and non-smokers, in respect of sites of origin and cytology of tumours and presence or absence of asbestosis, would be of value.

3. Mesothelioma

(1) The International Panel of Pathologists¹ and National Panels established following the 1964 meeting² have served a useful purpose. It is recommended that panels be established in other countries and membership of the International Panel be extended. The main purpose of these panels is to ensure uniformity of diagnostic criteria and recording of histological types of diffuse mesothelioma. Collaborative study of histology slides in National Panels is recommended. The diagnosis of mesothelioma can be made by exfoliative cytology of the pleural fluid. If the cytological diagnosis is made by a competent cytologist, biopsy may be unnecessary.

(2) To improve consistency of diagnosis there is an urgent need for a comprehensive atlas on mesotheliomas or, alternatively, for inclusion of an enlarged section on mesotheliomas in the new edition of the WHO Monograph on Tumours of the Lung. Criteria for diagnosis by exfoliative cytology and a description of the fine structure of mesotheliomas should be included.

¹The International Panel consists of: Dr. M. Kannerstein (USA), Professor D. Magner (Canada), Dr. L. Meurman (Finland), Professor W. T. E. McCaughy (Eire), Professor H. Otto (FRG), Dr. H. Planteydt (Netherlands), Dr. E. Roitsch (GDR), Professor L. Santi (Italy), Professor I. Webster (South Africa), and Dr. J. C. Wagner (UK) as Secretary.

²Great Britain, South Africa, United States, Canada, Netherlands.

Clinical research

(1)*† Monitoring by immunological methods of populations exposed to asbestos should be investigated to ascertain whether it is possible to recognize those who are developing, or will develop, tumours.

(2) The use of chromatographic methods for the study of mucopolysaccharides and other tumour-associated substances in pleural fluids should be explored. Sensitive methods might be developed and applied to identify secretory products of mesotheliomas in blood and urine.

Experimental studies

(1)* Information is required about the role of fine particles, especially the influence of fibre size, in the induction of tumours. These studies should be extended to include fibres other than asbestos. A sub-committee should be established to review the need for, and arrange the distribution of, standard samples of asbestos and other fibres in addition to the UICC reference samples.

(2)† The fate of inhaled particles of various sizes, shapes, and chemical compositions should be studied to determine more precisely the quantities and sites of initial deposition, change within the body, and later retention. The feasibility of increasing fibre elimination by various methods should be explored. Studies should be made of means of reducing the fibrogenicity and carcinogenicity of fibres already retained in the lungs.

(3) The use of cell and organ culture, including mesothelial tissue from man and other species, should be further investigated with a view to developing methods of screening dusts for fibrogenic and carcinogenic properties.

(4) Further studies should be carried out to determine the nature of the combined effect of tumour induction when animals are exposed to asbestos dust and cigarette smoke, metals or other chemical carcinogens, including those which act systemically, such as nitrosamines.

(5) Inhalation experiments should be extended to test various types of fibre; of special interest are forms of chrysotile and crocidolite, including the finer grade materials.

(6) It was felt that studies of the pathological effects of asbestos on species other than rodents would be of value.

(7) The effect of long-term ingestion of fibres of various sizes, shapes, and chemical compositions should be studied.

(8) Effects of fibres and associated metals on metabolism of target organs should be investigated.

Physics and chemistry

The panel reviewed the progress made on the 1964
UICC Recommendations. The proposals for the preparation and characterization of the UICC reference samples of asbestos had been satisfactorily implemented, and the panel recommended that a list of references to papers featuring the samples should be distributed to investigators in this field. Considerable progress had been made on methods of identifying the type of fibre in tissues but a quantitative method when several types of fibres were present had yet to be developed.

The panel discussed the further contribution that physical and chemical studies can make to research on the biological effects of asbestos and other fibrous materials. Of especial interest are the effects of fibre size and shape on the retention of material in the lungs, the site of deposition, the migration of fibres within the body, and their carcinogenicity or other biological activity. The following recommendations were made:

Projects
1. Materials for experimental work*

(a) Supplies of asbestos from relevant sources should be obtained where there is evidence of variation in geological form, trace element content or significant biological findings.

(b) Small samples of various fibrous materials should be prepared for studies on the influence of fibre size and shape on carcinogenicity. For this purpose the samples should be milled to different degrees of fineness.

(c) For investigations on the influence of particle shape and size, on the inhalation and subsequent fate of asbestos fibres a chrysotile and an amphibole of fibre length greater than the UICC samples should be prepared.

2. Methods*

(a) There is an urgent need for the quantitative assessment, size analysis, and characterization of particles and fibres in the lungs and other organs. Details of available methods should be circulated, international comparisons undertaken, methods standardized, and new techniques developed.

(b) No methods are at present available for the preparation of fibres in narrow ranges of diameter and length in sufficient quantities for inoculation experiments. Techniques for these purposes are urgently required, especially in view of the advantages such graded samples could provide for investigating the influence of these physical factors on the carcinogenicity of fibres of different materials.

(c) Since the degree of dispersion of fibres (especially chrysotile) used in inoculation studies may have a marked influence on their carcinogenicity, methods are required for quantifying dispersion.

(d) Inhalation studies require precise control of the characteristics of the dust clouds. Improved methods of dispensing fibrous dusts in such investigations need to be developed.

(e) Methods are available for collecting the important size fractions of dust clouds in inhalation studies when the particles are of compact shape. Similar methods must be developed for fibrous particles.

(f) The present membrane filter methods of measuring the levels of airborne asbestos dust require standardization. This should be done by interlaboratory trials on a continuing basis. Particle counting by electron microscopy should also be developed. Gravimetric assessment methods and the automation of particle counting should be explored.

3. Inhalation studies†

Considerable information is now available on the deposition, retention, and migration of particles of compact shape. Recently developed methods, especially radioactive tracer techniques, should be used to obtain similar knowledge for fibrous particles. This information is needed to identify the biologically important size fraction and to help interpretation of epidemiological and pathological studies.

4. Occupational and environmental studies

The use of both fibre counts and gravimetric methods for assessing asbestos dust concentrations should be encouraged. Data collected over an extended period will be particularly valuable in identifying the parameters of the dust which can be correlated with epidemiological evidence on the health hazard.

5. Physics and chemistry panel

It is recommended that an international panel be established to assist in implementing these recommendations. The panel would periodically review requirements for materials for experimental work, provide guidance on physical and chemical problems, and arrange national and international standardization trials.

References

Report of the Advisory Committee on Asbestos Cancers

Epidemiology panel

Dr. M. Becklake
McGill University, Department of Epidemiology and Health, 3775 University Street, Montreal 110, Quebec, Canada

Dr. H. Bohlig
Ludwig'sche Krankenanstalten, 588 Lüdenscheid, Germany

Dr. N. Day
International Agency for Research on Cancer, Unit of Epidemiology and Biostatistics, 150 Cours Albert Thomas, Lyon 69008, France

Professor P. C. Elmes
Queen's University of Belfast, Department of Therapeutics and Pharmacology, Institute of Clinical Science, Grosvenor Road, Belfast BT12 6BJ, Northern Ireland, UK

Dr. J. C. Gilson
Medical Research Council, Pneumoconiosis Unit, Llandough Hospital, Penarth, Glamorgan, Wales, UK (Chairman)

D. J. Lepoutre
S.A. Eternit, Medical Department, 2920 Kapelle-op-den-Bos, Belgium

Professor J. C. McDonald
McGill University, Department of Epidemiology and Health, 3775 University Street, Montreal 110, Quebec, Canada

Mr. C. E. Rossiter
Medical Research Council, Pneumoconiosis Unit, Llandough Hospital, Penarth, Glamorgan, Wales, UK

Dr. H. Sakabe
Ministry of Labour, Department of Industrial Physiology, National Institute of Industrial Health, 2051 Kizukisumiyoshicho, Kawasaki, Japan

Dr. J. J. Selikoff
Mount Sinai School of Medicine, Environmental Sciences Laboratory, 100th Street and Fifth Avenue, New York, NY 10029, USA

Dr. G. K. Sluis-Cremer
South African Medical Research Council, National Research Institute of Occupational Diseases, PO Box 4788, Johannesburg, South Africa

Dr. W. Smither
British Asbestos Research Council, 114 Park Street, London W1Y 4AB, England, UK

Dr. G. Wright
Department of Medical Research, St Luke's Hospital, 11311 Shaker Boulevard, Cleveland, Ohio 44101, USA

Pathology panel

Dr. A. C. Allison
Medical Research Council, Clinical Research Centre, Watford Road, Harrow, Middlesex HA1 3UJ, England, UK

Mr. G. Berry
Medical Research Council, Pneumoconiosis Unit, Llandough Hospital, Penarth, Glamorgan, Wales, UK

Dr. P. Bogovski
International Agency for Research on Cancer, Unit of Environmental Carcinogens, 150 Cours Albert Thomas, Lyon 69008, France

Dr. M. Kannerstein
Barnert Memorial Hospital Centre, Pathology Department, 680 Broadway, Paterson, NJ 07514, USA

Professor W. T. E. McCaughey
Trinity College School of Pathology, University of Dublin, Dublin 2, Eire

Professor D. Magner
Canadian Tumour Reference Centre, Department of Pathology, University of Ottawa, Ottawa, Ontario, KIN 6N5, Canada

Professor H. Otto
Direktor des pathologischen Instituts der Stadt Krankenanstalten, Beurhausstrasse 40, 46 Dortmund, West Germany

Dr. H. T. Plancteydt
Stichting Streeklaboratorium "Zeeland", Noorpoortplein 2, Middleburg, The Netherlands

Dr. M. Stanton
National Institute of Health, Department of Health, Education and Welfare, Bethesda, Md, 20014, USA

Dr. J. C. Wagner
Medical Research Council, Pneumoconiosis Unit, Llandough Hospital, Penarth, Glamorgan, Wales, UK (Chairman)

Professor S. Watanabe
National Cancer Centre, Research Institute, Department of Pathology, Tsukiji, 5-1-1 Chome, Chuo-ku, Tokyo, Japan

Professor I. Webster
Medical Research Council South Africa, National Research Institute for Occupational Diseases, PO Box 4788, Johannesburg, South Africa

Physics and chemistry panel

Dr. L. Le Bouffant
Centre d'Etudes et de Recherches des Charbonnages de France, Verneuil-en-Hallatte, B.P. No. 27, 60550 Creil, France

Mr. G. W. Gibbs
McGill University, Department of Epidemiology and Health, 3775 University Street, Montreal 110, Quebec, Canada

Dr. S. Holmes
Asbestosis Research Council, c/o Turner Bros, Asbestos Co. Ltd., PO Box 40, Rochdale, England, UK

1 Unable to attend.
Morbidity of British coal miners in 1961-62 F. D. K. LIDDELL

Mortality of British coal miners in 1961 F. D. K. LIDDELL

A study of the acute and chronic changes in ventilatory capacity of workers in Lancashire cotton mills G. BERRY, C. B. McKERROW, M. K. B. MOLYNEUX, C. E. ROSSITER, AND J. B. L. TOMBLESON

Use of radioisotopes in the study of textile workers with byssinosis and chronic lung damage L. S. VASKOV

Computer simulation of industrial hazards E. G. KNOX

Relationship between sickness absence and length of service S. J. POCOCK

Radiological changes in carpal and meracarpal bones and phalanges caused by chain saw vibration T. KUMLIN, M. WIKERI, AND P. SUMARI

Effect of silica on phospholipids in the rat lung M. GRUNSPAN, H. ANTWEILER, AND W. DEHNEN

Industrial ammonia gassing M. WALTON

Notes and miscellanea
 Safety and health at work: The Robens Report R. C. BROWNE
 Employment Medical Advisory Service MARGARET GRACEY

Book reviews

Information section

A number of copies are available and may be obtained from the Publishing Manager, British Medical Association, Tavistock Square, London WC1H 9JR, price £1.25 (£1.50 in countries overseas; U.S.A. $3.60).