THE AETIOLOGY, PREVENTION AND TREATMENT OF CHRONIC BRONCHITIS*

BY

NEVILLE SOUTHWELL

From Guy's Hospital

No one can pretend that the treatment of chronic bronchitis at the present time is anything but profoundly unsatisfactory. No attempts are made at prevention, whilst treatment of the established case depends to a large extent upon the depth of the patient's purse, and consists of a bottle of cough mixture for the poor patient, and advice to winter in South Africa for his wealthier fellow-sufferer.

It is therefore quite clear that a reconsideration of the whole problem is urgently indicated, especially as this disease is well known to be an extremely common condition in England, and one of great economic importance, extending in most cases over many years of the patient's working life, and rendering him year by year progressively less capable of following his occupation. The final result is likely to be a state of miserable invalidism, the patient himself crippled by prohibitive shortness of breath, and both he and his family irritated beyond endurance by his constant ineffectual coughing.

Aetiology

Chronic bronchitis is essentially an inflammatory condition, and to bear this constantly in mind is of cardinal importance in the understanding of the problem under discussion. In all acute and chronic inflammatory disorders the nature, severity, and duration of the disease are determined by a balance between the virulence and numbers of the causative agent on the one hand, and the local and general resistance of the patient on the other. Chronic bronchitis is no exception. The organisms are known. They are bacterial, and include micrococcus catarrhalis, pneumococci, various forms of streptococci, both haemolytic and non-haemolytic, especially streptococcus viridans, together with Friedlander's bacillus, and staphylococci. The organisms are almost always mixed, and it is not possible to say that any of the above predominates in the majority of cases. The resistance of the patient depends upon a number of factors. It is probable that first and foremost amongst these is the natural inherited resistance of the individual. Some persons, indeed some whole families, are unduly prone to respiratory infection both of the upper and lower respiratory tract. Lowering of their general and local resistance to respiratory infection is brought about in these susceptible persons by a combination of causes; these include the obvious ones of chill, damp, fatigue, under-nourishment, and debility from a recent illness of some kind or other. No less important are the local factors: mouth breathing, excessive cigarette smoking, and any real focus of infection in the naso-pharynx. In addition, it is well known that workers in certain occupations are particularly likely to develop chronic bronchitis, and naturally these occupations are those involving the inhalation of dusts and fumes, especially those of silica, iron, steel, asbestos, carbon and kaolin; less commonly, the fumes of chlorine, ether, ammonia, nitric acid and, strange to relate, also in a few apparently innocuous trades, such as hairdressing.

There is an additional group of cases, in which an essential underlying feature is the presence of a permanent, infective focus in the lung, usually bronchiectatic, often with fibrosis, and not uncommonly to be found in stout, thick-chested subjects with a poor respiratory movement. In this minority upper respiratory infection is of less importance in producing chronicity, but is responsible for repeated symptomatic exacerbations.

Clinical Course

It is almost invariable to find that a patient with chronic bronchitis gives a history of recurrent acute or subacute attacks in the past. In many cases the bronchial mucosa is first damaged in childhood during one or other of the acute specific fevers, most often measles or whooping cough, especially if complicated by bronchopneumonia. At that time the bronchitis clears up quickly, but probably another attack will occur the next winter, after an upper respiratory infection, and on this occasion prove more stubborn, and when the same sort of thing happens the following winter, it lingers on for many weeks, and finally, in succeeding years, tends to drag on in a mild form throughout the whole winter. The ultimate result is a permanently damaged and denuded bronchial epithelium, which reacts violently to the slightest inhaled irritant, so that the sufferer is never really free from symptoms the whole year round. Nor is this all, for owing to the obtrusive element, sooner or later in most cases will appear the twin bogies of chronic bronchitis: bronchitic asthma and emphysema.

Preventive Treatment

Any attempts at prevention must be made before the chronic inflammatory changes in the bronchial tree are finally established, i.e. at a fairly early stage, when the patient is still giving a history of recurrent autumnal or winter exacerbations, but is well during the rest of the year. Every effort must then be made to protect these susceptible individuals from upper respiratory infection and its effects. This might be accomplished in various ways, and from every point of view, not least the assessment of results, the measures to be suggested could best be applied to large groups of persons rather than individuals. These measures will consist of:

1. Attempts at diminishing the frequency of upper respiratory infection in those prone to develop bronchitis.
2. Attempts at protecting the individual from the effects upon his bronchial mucosa of an upper respiratory infection, should he contract one.

It is accepted that upper respiratory infections occur either by direct droplet spread from individual to individual, or by inhalation of airborne pathogens spread in the atmosphere from a more distant source. Although

* A paper read before the London group of the Association of Industrial Medical Officers in September 1945.
the former is probably the more common way of
contracting an upper respiratory infection, the latter also
accounts for a considerable number of cases, and its
importance may well have been somewhat under-
estimated in the past.

Measures aimed at diminishing direct droplet infec-
tion have quite properly attracted a great deal of
attention for a number of years past. The damage is
doubtless, course, far greater than is often
realized, and the prevention of, any attention once
the apparatus is connected with a power point.
Propylene glycol is also efficacious, judging from its
laboratory trials, and much work has been done with it
in America as, some at least of which can be avoided only with difficulty by most
persons, for example the public transport vehicles.
However, widespread propaganda against indiscriminate
coughing and sneezing is obviously of great value, and it
is evident that warning notices should be posted in all
crowded places in public and industrial premises, and
elsewhere. Bronchitic subjects might be well advised
to walk or cycle to work if they can, or if travel is un-
avoidable, a bus is probably a better choice than the
underground. In workrooms, proper spacing of
workers is naturally essential and the erection of glass
screens between opposite benches has much to recom-
mand it. It is a wise course to send home anybody
who arrives at work in the morning with a streaming
head cold.

Measures aimed at controlling distant airborne
droplet spread are important. Droplets are dispersed
rapidly and travel comparatively distances of at least
15 feet, and they remain airborne for a considerable
time. It has been found possible to recover influenza
virus from various parts of a large room one hour after its
being generated in the atmosphere, and thus to
prevent the spread of respiratory infection from these airborne
droplets, the concentration of pathogens in the
atmosphere must obviously be kept as low as possible. This
might be achieved in various ways —

(i) Improved ventilation in indoor premises. Al-
though most large buildings are equipped with some
form of mechanical ventilation, natural ventilation can
usually be made satisfactory by attention to various
elementary points. Natural ventilation depends upon
wind pressure and gravity, air being driven in through
windows on the windward side and out on the leeward.
Gravity effects are due to temperature differences, warm
air being drawn upwards through the chimney, especially
with a fire burning. If there is no chimney, roof
conduits are valuable, their action being supplemented by the
force of the wind itself. Windows should be adequate, the usual allocation is said to be 5 square feet of window
space for every 100 square feet of floor area. Mechanical
ventilation is usually of propulsion type in large premises,
but extraction ventilation is quite satisfactory providing
that the air is extracted, otherwise air will be drawn in through cracks and under doors, producing
draughts. It is also important to remember that windows
should be closed in the near vicinity of the extractor, to prevent short circuiting of fresh air. Actual
air conditioning does not seem to confer any additional
benefit from the point of view of ventilation. The
whole subject of ventilation is admirably dealt with in a detailed
article by Bedford (1944).

(ii) Bactericidal mists. Much laboratory work has
been published on the use of bactericidal mists, and it has
shown quite definitely that the dissemination of certain
mists in the atmosphere of the laboratory in small con-
centration is sufficient to inhibit the development of pathogens. It remains to put this method to the test of
a full-scale field trial from the clinical point of view.

The essential requisite of a bactericidal mist is that it
shall be invisible. This enables bacteria to be eliminated,
not unpleasant in the atmosphere, non-

injurious to clothing or industrial products, non-irritant
to the nares, non-corrosive to metals, cheap and easy to
commercialize. Various agents have been tried, some of
them unsatisfactory as they did not fulfil the above criteria;
ozone, propylene glycol and resorcin have been used,
and naturally the practicability of using a bactericidul
mist at the right time is in the mind of the

With the instruction, there is much to be said for resorcin. It is genuinely
bactericid in quite small quantities in the atmosphere,
test of time, and the clinical impression of many very experienced physicians is that cod liver oil has some value in building up resistance to winter colds. Different kinds of vaccines have been, and still are, in use as prophylactics. A stock anti-cataarrh vaccine is commonly advised, but large-scale experiments carefully controlled have not shown any appreciable protection in treated groups. It does seem, however, that spontaneous, unaided immunity of some value as, although it cannot be said to prevent upper respiratory infection in bronchitis, its use appears to ameliorate the severity of the symptoms of any resultant bronchitic attack, and very frequently the attacks themselves are fewer in number.

A considerable amount of investigation has now been made in the use of penicillin by spray and inhalation purposes. Its use is directed to the lowering of local infectivity of staphylococcal and streptococcal infections, and of course very considerable quantities will then appear in the urine. Moreover, the use of sprays on the nasopharynx has a definite therapeutic value in limiting the length of infectivity of streptococcal and staphylococcal conditions there. It seems reasonable to hope that inhalations of penicillin at the beginning of a head cold may serve to prevent the onset of bronchitis in those individuals in which this is the usual sequence of events, and certainly preliminary clinical results obtained by the writer tend to strengthen this impression.

From these results it appears that no benefit is likely to follow the use of penicillin inhalations in the treatment of longstanding respiratory disease, as it is established chronic bronchitis, or bronchiecctasis, in which the extensive peribronchial fibrosis and poor air entry together contribute formidable obstacles to the production of any permanent improvement. In these conditions little if any clinical improvement has been noted after even a prolonged administration of penicillin over a period of some weeks, with an hour or more inhalation at a time, and a total dosage of 1 to 2 million units. The more acute catarrhal infections, on the other hand, do appear to be a much more promising prospect, as already indicated. Although it is, of course, impossible to reach any firm conclusion based on the study of a small group of cases, it would appear justifiable to treat any head cold or upper respiratory infection in a bronchitic subject with a prophylactic course of penicillin by inhalation.

The technique of penicillin inhalation is not difficult. The apparatus used by Mutch and Rewell (1945) in their experiments in this mode of administration was an inhaler originally designed for giving adrenaline mists to asthmatics, and modified for this special purpose with specially wide-bore tubing and a closely fitting face-mask. The actual inhalation is not unpleasant at all. It is true that there is an odour somewhat reminiscent of the farmyard, but patients do not find it intolerable, and it is reassuring to know that the yellow staining of the face and moustache washes off quite easily. For the purpose of a large-scale experiment, a less extravagant apparatus is desirable, and in fact it is not difficult to produce an excellent mist with an electrically driven air current. Up to the present it has not been possible to nebulise a fine enough mist with any form of hand spray; the particles produced are much larger, and are deposited in considerable quantity in the naso-pharynx, where they are swallowed and do not reach the bronchial tree itself.

Treatment of the established case of Chronic Bronchitis

Apart from advice on general health, and the avoidance of the occupational precipitants noted earlier in this article, the duty of the physician towards the patient with real chronic bronchitis lies chiefly in the treatment of the obstructive cough, the accompanying bronchospasm, and the progressive pulmonary emphysema. Some observers in the past have stated that no expectorant mixture is of any value at all, and have sought to prove that after administration of expectorants there is no increase in the amount of sputum produced. Whatever may be the laboratory evidence, however, all bronchitics admit that the natural process of expectoration is facilitated by certain mixtures, and the distress of coughing much relieved. Not all expectorants are of equal value in this respect, and it is the strong conviction of the writer that the two of greatest worth—thus diminish iodide and ammonium carbonate. The former especially has a notable effect on the sputum, liquefying it and relieving bronchospasm to some extent. It should be given indefinitely in small doses throughout the winter months to these patients. To be of any use, ammonium carbonate, although unpleasant, must be given in large doses. In addition to the above drugs, the Brompton honey mixture is often a great help in the mornings, and consists of sodium chloride, sodium bicarbonate, spirit of chloroform and aniseed water, and is given in an ounce of hot water. One small point is the indispensability of the common routine addition of stramonium or belladonna to these mixtures, because of their action in drying up secretions.

For the treatment of emphysema it is permissible to emphasize the surprising success of physiotherapy in some of the most unfavourable cases. Relaxation, deflation of the lungs and added mobility to the thorax, together with improved respiratory breathing power, and an increase in the vital capacity itself, can all be achieved by patient tuition in a well organized clinic, providing the subject is allowed the necessary time to attend, for it is usually many months before the maximum benefit is attained. The use of a belt to hold in the abdomen and elevate the diaphragm, and the amount of residual air in the lungs, has been advised and is theoretically sound, but patients themselves dislike the sense of constriction round the waist and are loath to adopt the ring 3–5 minutes.

Epinephrine is of great value, even in the absence of any obvious bronchospasm which, however, always exists to a certain extent in these cases. It should be given in full doses at regular intervals for an indefinite period. Some patients will complain of its side effects, such as palpitation, and it may then be found that administration as a mixture instead of as the usual tablet overcomes this drawback. It is also worth while bearing in mind that elderly bronchitics may complain of the difficulty in passing water after taking epinephrine.

Conclusion

The writer has been much impressed by the constancy of the infective factor in the great majority of cases of recurrent bronchitis. As it appears impossible at the present time to do more than ameliorate the symptoms of the chronic case, it is felt that attention should be directed towards the prevention of the preceding recurrent infective episodes. There seems to be sufficient laboratory evidence to justify the experimental use of bactericidal mists and inhalations on patients themselves.

It is suggested that it would be profitable to undertake a field trial of these methods in industry, or wherever there are large numbers of persons under continued supervision, especially where they have properly documented past medical histories.

References