Book Reviews

This book, which is the first on industrial toxicology to be published in Australia, is chiefly for use in New South Wales. It is written by a surgeon who took up his present office of Senior Medical Officer in the Department of Occupational Health, New South Wales, eight years ago. There are two excellent chapters which form a good introduction to cover the subjects of modern pesticides and dust diseases. Each chapter in the book is divided into a lay section followed by a medical one, which has the advantage that the layman will undoubtedly read the medical section and this is important for many of the warnings are only given in the medical sections. Certain items of information are important, such as that silver solder may contain a high proportion of cadmium (p. 26), but certain items are lacking, for example, there is no mention of the brownness of these cadmium fumes, which is their main warning characteristic.

The usefulness of the book is diminished by its departing from the excellent tradition, probably started by Alice Hamilton, of always quoting the references to any statement or disastrous occurrence. Mr. Trainor simply gives a list of references at the end of each chapter without any indication in the text which author supports which statement; for example, on page 107, he reports that a man who welded in a fat residue tank died from pulmonary oedema because of the fumes of acrolein. It is impossible by reading the references at the end of the chapter to decide which paper reported this incident.

In this book there are several controversial statements, for example on page 57 . . . 'Carbon monoxide is not known to have any toxic action per se'. He is almost certainly here alluding to the chronic poisoning, but in his own words on page 18 ' . . . irrevocability of the spoken word and the spent arrow is sometimes mercilessly demonstrated in the law courts when an ill-considered opinion or report disintegrates, and its author sweats profusely under the searing head of skilled cross-examination.'

It is an interesting book to read but cannot be recommended to the uninitiated because not only are there controversial statements in it, but the emphasis is attuned obviously to the conditions of work in New South Wales rather than in Great Britain.

J. R. GLOVER

This pamphlet covers the field of 'Lifting in Industry' extremely well. It is the result of many years' work of a committee which included doctors and physiotherapists from industry. The illustrations are good and practical. The pamphlet does not attempt to suggest how these methods of lifting should be introduced into the factory and there are various ways of doing this, from the employment of a full-time physiotherapist in the larger works to the training of instructors in the training division of the medium-sized works. The method of a lifting demonstration for one half day by a lecturer from outside may serve to excite an interest in the subject but it is questionable whether a permanent impression is left in the works.

This pamphlet has been adopted by RoSPA for its training courses for instructors in lifting and manual handling in Birmingham and Cardiff and can be thoroughly recommended as the best reference guide on the subject. It is a pity that no acknowledgement of reference is given to T. McClurg Anderson, of Glasgow, whose pioneer work and book, Human Kinetics, forms the basis of the methods given in this pamphlet.

J. R. GLOVER

This book is one of a series planned by the American Industrial Hygiene Association and sponsored by the United States Atomic Energy Commission.

In a preface Dr. Albert points out that thorium is unusual in that the radiological health hazards encountered in industry are not caused by 232Th, which is the long-lived parent isotope of the naturally occurring radioactive decay series and constitutes virtually the entire mass of natural thorium. It is from a variety of elements present in the decay chain of 232Th that the hazards arise, these involving nearly every type of radiological health protection problem met with in the atomic energy industry.

For many years after its discovery in 1828 thorium had no industrial application, but the introduction in 1885 of the Welsbach gas mantle incorporating thorium nitrate led to a rapidly increased production of thorium, this diminishing later with the development of the electric light bulb. Up to 1950 over 90% of the reported industrial consumption of thorium was for gas mantles,