Article Text

Download PDFPDF

Original article
Cross-national comparison of two general population job exposure matrices for physical work exposures
  1. Bradley Evanoff1,
  2. Marcus Yung1,
  3. Skye Buckner-Petty1,
  4. Matthew Baca1,
  5. Johan Hviid Andersen2,
  6. Yves Roquelaure3,
  7. Alexis Descatha3,4,5,
  8. Ann Marie Dale1
  1. 1 Division of General Medical Sciences, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
  2. 2 Department of Occupational Medicine, Danish Ramazzini Centre, Regional Hospital West Jutland, University Research Clinic, Herning, Denmark
  3. 3 INSERM, U1085, IRSET (Institute de recherché en santé, environnement et travail), ESTER Team, University of Angers, Angers, France
  4. 4 AP-HP, EMS (Samu92), Occupational Health Unit, Raymond Poincaré University Hospital, Garches, France
  5. 5 INSERM, UMR 1168 UMS011, University of Versailles Saint-Quentin-en-Yvelines, Villejuif, France
  1. Correspondence to Dr Bradley Evanoff, Division of General Medical Sciences, Washington University School of Medicine in St Louis, MO 63110, USA; bevanoff{at}dom.wustl.edu

Abstract

Objectives Job exposure matrices (JEMs) are increasingly used to estimate physical workplace exposures. We conducted a cross-national comparison of exposure estimates from two general population JEMs to aid the interpretation of exposure–outcome associations across countries and to explore the feasibility of cross-national application of JEMs to provide workplace physical exposure estimates.

Methods We compared physical exposure estimates from two general population JEMs created from the FrenchCohorte des consultants des Centres d’examens de santé study (27 exposure variables) and the American Occupational Information Network database (21 exposure variables). These exposure variables were related to physical demands or ergonomic risk factors for musculoskeletal disorders. We used a crosswalk to match French Profession et Catégorie Sociale job codes with American Standard Occupational Classification job codes and calculated Spearman’s correlations and Cohen’s kappa values for exposure variable pairs between these French and American JEMs. We defined a priori 50 matched French and American JEM variable pairs that measured similar exposures.

Results All variable pairs measuring similar physical exposures demonstrated positive correlations. Among the 50 matched pairs, 33 showed high correlation (ρ≥0.70) and 46 showed at least moderate agreement (κ≥0.41). Exposures expected to be mutually exclusive (manual work vs office work) showed strongly negative correlations.

Conclusions French and American general population physical exposure JEMs were related, sharing moderate to high association and moderate to substantial agreement between the majority of variable pairs measuring similar exposures. These findings will inform cross-national comparisons of study results and support some uses of general population JEMs outside their countries of origin.

  • musculoskeletal disorders
  • biomechanical exposure assessment
  • ergonomics
  • epidemiology

This is an open access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited, appropriate credit is given, any changes made indicated, and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/.

Statistics from Altmetric.com

Request Permissions

If you wish to reuse any or all of this article please use the link below which will take you to the Copyright Clearance Center’s RightsLink service. You will be able to get a quick price and instant permission to reuse the content in many different ways.

Footnotes

  • AD and AMD contributed equally.

  • Contributors BE, AD, YR and AMD designed the study, obtained funding and reviewed and edited the paper. MY and BE made significant contributions to the data visualisation, writing and formatting of this manuscript. SB-P and MB were the primary data analysts and made significant contributions to the visualisations. JHA made significant contributions to the conceptualisation and reviewed and edited the paper.

  • Funding This study was supported by research funding from the American National Institute for Occupational Safety and Health (NIOSH R01OH011076). The French CONSTANCES Cohort is supported by the French National Research Agency (ANR-11-INBS-0002), Caisse Nationale d’Assurance Maladie des travailleurs salariés-CNAMTS and is funded by the Institut de Recherche en Santé Publique/Institut Thématique Santé Publique and the following sponsors: Ministère de la santé et des sports, Ministère délégué à la recherche, Institut national de la santé et de la recherche médicale, Institut national du cancer et Caisse nationale de solidarité pour l’autonomie, as well as Institute for research in public health (IReSP, CapaciT project).

  • Disclaimer The content is solely the responsibility of the authors and does not necessarily represent the official views of the NIOSH, nor the sponsors of the CONSTANCES project.

  • Competing interests None declared.

  • Ethics approval Washington University in St Louis, USA.

  • Provenance and peer review Not commissioned; externally peer reviewed.

  • Patient consent for publication Not required.