Article Text

Download PDFPDF
Original research
Long-term exposure to air pollution and COVID-19 incidence: a prospective study of residents in the city of Varese, Northern Italy
  1. Giovanni Veronesi1,
  2. Sara De Matteis2,3,
  3. Giuseppe Calori4,
  4. Nicola Pepe4,
  5. Marco M Ferrario1
  1. 1 Research Center in Epidemiology and Preventive Medicine, Department of Medicine and Surgery, University of Insubria, Varese, Italy
  2. 2 Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
  3. 3 National Heart and Lung Institute, Imperial College London, London, UK
  4. 4 Arianet S.R.L, Milano, Italy
  1. Correspondence to Professor Giovanni Veronesi, Research Center in Epidemiology and Preventive Medicine, Department of Medicine and Surgery, University of Insubria, Varese 21100, Italy; giovanni.veronesi{at}uninsubria.it

Abstract

Objectives To investigate the association between long-term exposure to airborne pollutants and the incidence of SARS-CoV-2 up to March 2021 in a prospective study of residents in Varese city.

Methods Citizens of Varese aged ≥18 years as of 31 December 2019 were linked by residential address to 2018 average annual exposure to outdoor concentrations of PM2.5, PM10, NO2, NO and ozone modelled using the Flexible Air quality Regional Model (FARM) chemical transport model. Citizens were further linked to regional datasets for COVID-19 case ascertainment (positive nasopharyngeal swab specimens) and to define age, sex, living in a residential care home, population density and comorbidities. We estimated rate ratios and additional numbers of cases per 1 µg/m3 increase in air pollutants from single- and bi-pollutant Poisson regression models.

Results The 62 848 residents generated 4408 cases. Yearly average PM2.5 exposure was 12.5 µg/m3. Age, living in a residential care home, history of stroke and medications for diabetes, hypertension and obstructive airway diseases were independently associated with COVID-19. In single-pollutant multivariate models, PM2.5 was associated with a 5.1% increase in the rate of COVID-19 (95% CI 2.7% to 7.5%), corresponding to 294 additional cases per 100 000 person-years. The association was confirmed in bi-pollutant models; excluding subjects in residential care homes; and further adjusting for area-based indicators of socioeconomic level and use of public transportation. Similar findings were observed for PM10, NO2 and NO. Ozone was associated with a 2% decrease in disease rate, the association being reversed in bi-pollutant models.

Conclusions Long-term exposure to low levels of air pollutants, especially PM2.5, increased the incidence of COVID-19. The causality warrants confirmation in future studies; meanwhile, government efforts to further reduce air pollution should continue.

  • air pollution
  • COVID-19
  • epidemiology

Data availability statement

No data are available.

This article is made freely available for personal use in accordance with BMJ’s website terms and conditions for the duration of the covid-19 pandemic or until otherwise determined by BMJ. You may use, download and print the article for any lawful, non-commercial purpose (including text and data mining) provided that all copyright notices and trade marks are retained.

https://bmj.com/coronavirus/usage

Statistics from Altmetric.com

Request Permissions

If you wish to reuse any or all of this article please use the link below which will take you to the Copyright Clearance Center’s RightsLink service. You will be able to get a quick price and instant permission to reuse the content in many different ways.

Data availability statement

No data are available.

View Full Text

Footnotes

  • Contributors GV contributed to the conceptualisation and design of the study, data acquisition, formal statistical analysis and writing the original draft. GV is the study guarantor. SDM contributed to the statistical analysis and interpretation and to review and editing of the manuscript. GC contributed to and supervised exposure data modelling and acquisition and to manuscript review and editing. NP contributed to exposure data modelling and acquisition and to manuscript review and editing. MMF contributed to conceptualisation and design of the study, supervised the study and contributed to manuscript review and editing.

  • Funding The authors have not declared a specific grant for this research from any funding agency in the public, commercial or not-for-profit sectors.

  • Competing interests None declared.

  • Provenance and peer review Not commissioned; externally peer reviewed.

  • Supplemental material This content has been supplied by the author(s). It has not been vetted by BMJ Publishing Group Limited (BMJ) and may not have been peer-reviewed. Any opinions or recommendations discussed are solely those of the author(s) and are not endorsed by BMJ. BMJ disclaims all liability and responsibility arising from any reliance placed on the content. Where the content includes any translated material, BMJ does not warrant the accuracy and reliability of the translations (including but not limited to local regulations, clinical guidelines, terminology, drug names and drug dosages), and is not responsible for any error and/or omissions arising from translation and adaptation or otherwise.