Article Text

Download PDFPDF
Original research
Potential of deep learning in assessing pneumoconiosis depicted on digital chest radiography


Objectives To investigate the potential of deep learning in assessing pneumoconiosis depicted on digital chest radiographs and to compare its performance with certified radiologists.

Methods We retrospectively collected a dataset consisting of 1881 chest X-ray images in the form of digital radiography. These images were acquired in a screening setting on subjects who had a history of working in an environment that exposed them to harmful dust. Among these subjects, 923 were diagnosed with pneumoconiosis, and 958 were normal. To identify the subjects with pneumoconiosis, we applied a classical deep convolutional neural network (CNN) called Inception-V3 to these image sets and validated the classification performance of the trained models using the area under the receiver operating characteristic curve (AUC). In addition, we asked two certified radiologists to independently interpret the images in the testing dataset and compared their performance with the computerised scheme.

Results The Inception-V3 CNN architecture, which was trained on the combination of the three image sets, achieved an AUC of 0.878 (95% CI 0.811 to 0.946). The performance of the two radiologists in terms of AUC was 0.668 (95% CI 0.555 to 0.782) and 0.772 (95% CI 0.677 to 0.866), respectively. The agreement between the two readers was moderate (kappa: 0.423, p<0.001).

Conclusion Our experimental results demonstrated that the deep leaning solution could achieve a relatively better performance in classification as compared with other models and the certified radiologists, suggesting the feasibility of deep learning techniques in screening pneumoconiosis.

  • pneumoconiosis
  • deep learning
  • digital radiography
  • classification

Statistics from

Request Permissions

If you wish to reuse any or all of this article please use the link below which will take you to the Copyright Clearance Center’s RightsLink service. You will be able to get a quick price and instant permission to reuse the content in many different ways.