Article Text

Download PDFPDF
Original research
Animal farming and the risk of lymphohaematopoietic cancers: a meta-analysis of three cohort studies within the AGRICOH consortium
  1. Sonia El-Zaemey1,2,
  2. Leah H Schinasi2,3,
  3. Gilles Ferro2,
  4. Séverine Tual4,
  5. Pierre Lebailly4,
  6. Isabelle Baldi5,
  7. Karl-Christian Nordby6,
  8. Kristina Kjærheim7,
  9. Joachim Schüz2,
  10. Alain Monnereau8,9,
  11. Maartje Brouwer10,
  12. Stella Koutros11,
  13. Jonathan Hofmann11,
  14. Petter Kristensen6,
  15. Hans Kromhout10,
  16. Maria E Leon2,
  17. Laura E Beane Freeman11
  1. 1 School of Public Health, Curtin University, Perth, Western Australia, Australia
  2. 2 Section of Environment and Radiation, International Agency for Research on Cancer (IARC), Lyon, France
  3. 3 Departmentof Environmental and Occupational Health, School of Public Health, Drexel University, Philadelphia, USA
  4. 4 ANTICIPE, U1086 INSERM, Université de Caen Normandie, and Centre deLutte Contre le Cancer François Baclesse, Caen, France
  5. 5 CHU de Bordeaux, Service de Médecine du Travail et PathologieProfessionnelle, Bordeaux, France
  6. 6 Department of Occupational Medicine and Epidemiology, National Institute of Occupational Health (STAMI), Oslo, Norway
  7. 7 Department of Research, Cancer Registry of Norway, Oslo, Norway
  8. 8 Hematological Malignancies Registry of Gironde, Bergonie Institute, Comprehensive Cancer Centre, Bordeaux, France
  9. 9 University of Bordeaux, INSERM U1219 Center - EPICENE Team, CHU de Bordeaux, Bordeaux, France
  10. 10 Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, The Netherlands
  11. 11 Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute (NCI), Bethesda, Maryland, USA
  1. Correspondence to Dr Sonia El-Zaemey, School of Public Health, Curtin University, Perth, WA 6102, Australia; sonia.el-zaemey{at}


Objective Animal farming entails a variety of potential exposures, including infectious agents, endotoxins and pesticides, which may play a role in the aetiology of lymphohaematopoietic cancers (LHCs). The aim of this study was to assess whether farming specific animal species is associated with the risk of overall LHC or its subtypes.

Methods Data from three prospective cohort studies in the USA, France and Norway which are part of the Agricultural Cohort consortium and which collected information about animal farming and cancer were used. Analyses included 316 270 farmers and farm workers. Adjusted Cox models were used to investigate the associations of 13 histological subtypes of LHC (n=3282) with self-reported livestock (cattle, pigs and sheep/goats) and poultry (ever/never and numbers raised) farming. Cohort-specific HRs were combined using random-effects meta-analysis.

Results Ever animal farming in general or farming specific animal species was not meta-associated with overall LHC. The risk of myeloid malignancies decreased with increasing number of livestock (p trend=0.01). Increased risk of myeloproliferative neoplasms was seen with increasing number of sheep/goats (p trend <0.01), while a decreased risk was seen with increasing number of livestock (p trend=0.02). Between cohorts, we observed heterogeneity in the association of type of animal farmed and various LHC subtypes.

Conclusions This large-scale study of three prospective agricultural cohorts showed no association between animal farming and LHC risk, but few associations between specific animal species and LHC subtypes were observed. The observed differences in associations by countries warrant further investigations.

  • agriculture
  • animal workers
  • epidemiology
  • cancer

Statistics from

Request Permissions

If you wish to reuse any or all of this article please use the link below which will take you to the Copyright Clearance Center’s RightsLink service. You will be able to get a quick price and instant permission to reuse the content in many different ways.


  • Contributors SE-Z wrote the first draft of the manuscript and provided input on the statistical analyses. GF carried out the statistical analysis. LS, LEBF and ML provided guidance in study design, statistical analyses and manuscript revisions. ST, PL, IB, KK, JS, AM, MB, SK, JH and HK participated in the manuscript preparation. All authors read and approved the final manuscript.

  • Funding This work was supported by a grant from the Office National de l’Eau et des Milieux Aquatiques (ONEMA), Plan d’action national ECOPHYTO 2018, Axe 3, Volet 4, France. In addition, this work was funded, in part, by the Intramural Research Program of the National Cancer Institute, National Institutes of Health (Z01-CP010119) and the Ammodo van Gogh travel grant VGP.14/20. SE-Z’s work was undertaken during the tenure of an IARC-Australia Postdoctoral Fellowship from the International Agency for Research on Cancer, supported by Cancer Council Australia (CCA). We used the following AHS data releases for this analysis: P1REL201209.0 and P2REL201209.

  • Disclaimer Where authors are identified as personnel of the International Agency for Research on Cancer/WHO, the authors alone are responsible for the views expressed in this article and they do not necessarily represent the decisions, policy or views of the International Agency for Research on Cancer/WHO.

  • Competing interests None declared.

  • Ethics approval All studies received approval from the relevant institutional or regional ethical committee.

  • Provenance and peer review Not commissioned; externally peer reviewed.

  • Patient consent for publication Not required.