Article Text
Abstract
Objective This study characterises neurocognitive domains that are affected by movement-induced time-varying magnetic fields (TVMF) within a static magnetic stray field (SMF) of a 7 Tesla (T) MRI scanner.
Methods Using a double-blind randomised crossover design, 31 healthy volunteers were tested in a sham (0 T), low (0.5 T) and high (1.0 T) SMF exposure condition. Standardised head movements were made before every neurocognitive task to induce TVMF.
Results Of the six tested neurocognitive domains, we demonstrated that attention and concentration were negatively affected when exposed to TVMF within an SMF (varying from 5.0% to 21.1% per Tesla exposure, p<0.05), particular in situations were high working memory performance was required. In addition, visuospatial orientation was affected after exposure (46.7% per Tesla exposure, p=0.05).
Conclusion Neurocognitive functioning is modulated when exposed to movement-induced TVMF within an SMF of a 7 T MRI scanner. Domains that were affected include attention/concentration and visuospatial orientation. Further studies are needed to better understand the mechanisms and possible practical safety and health implications of these acute neurocognitive effects.
- MRI
- static magnetic fields
- static magnetic stray fields
- time-varying magnetic fields
- cognition
- exposure
- risk assessment
- electromagnetic fields
- occupational health practice
- exposure assessment
- statistics
- hygiene/occupational hygiene
- epidemiology
- retrospective exposure assessment
- neurobehavioural effects
- longitudinal studies
- exposure monitoring
- bronchitis
- health and safety
- epidemiology