Article Text
Abstract
OBJECTIVES Oxidative DNA damage has been implicated in carcinogenesis. The DNA damage can be assessed from the urinary excretion of the DNA-repair product 8-hydroxydeoxyguanosine (8-OH-dG). The factors were investigated that influenced the excretion of urinary 8-OH-dG in 78 firefighters.
METHODS 53 Out of 78 firefighters were exposed to fire within 5 days of the study and 25 were not. 8-OH-dG was measured by ELISA and the distribution of the genotypes of CYP1A1, CYP2E1, GSTM1, and GSTT1 was measured by polymerase chain reaction.
RESULTS The homozygous wild type frequencies of CYP1A1 MspI, CYP1A1 ile-val, CYP2E1, GSTM1, and GSTT1 were 31.5%, 56.2%, 60.3%, 50.7%, and 53.4%, respectively. The geometric mean of urinary 8-OH-dG was 14.1 ng/mg creatinine in more active firefighters and 12.3 ng/mg creatinine in non-exposed and less active subjects. Significantly increased concentrations of urinary 8-OH-dG were found to be associated with cigarette smoking, and 14% of the variation of 8-OH-dG was explained by cigarettes smoked per day. The CYP1A1MspI, CYP1A1 ile-val, GSTM1, and GSTT1 genetic polymorphisms were not found to be significantly associated with the urinary excretion of 8-OH-dG. However, the subjects carrying the CYP2E1 mutant type excreted higher concentrations of 8-OH-dG and there was a marginally significant interaction of GSTT1 with firefighting activity. Multiple regression analysis confirmed that smoking was the strongest predictor of excretion of 8-OH-dG. Age, body mass index, and firefighting activity were not significant predictive factors for urinary 8-OH-dG.
CONCLUSION Smoking and CYP2E1 gene polymorphism may be important factors in carcinogenesis and the GSTT1 positive genotype may be a genetic susceptibility factor in firefighters who are exposed regularly to various chemical carcinogens.
- firefighters
- 8-hydroxydeoxyguanosine
- susceptibility