Article Text

Download PDFPDF
Maintenance of stellite and tungsten carbide saw tips: respiratory health and exposure-response evaluations.
  1. S M Kennedy,
  2. M Chan-Yeung,
  3. S Marion,
  4. J Lea,
  5. K Teschke
  1. Department of Medicine, University of British Columbia, Vancouver, Canada.


    OBJECTIVE--To study exposure to cobalt and chromium in saw maintenance rooms and test respiratory health among saw filers at lumber mills. Hard-metal lung disease is associated with cobalt in the manufacture of tungsten carbide tools; recently it has also been reported among tool maintenance workers. Lumber mills often use saws tipped with tungsten carbide or with a newer alloy, stellite (containing more cobalt, as well as chromium). METHODS--A cross sectional study of 118 saw filers at eight lumber mills was carried out that included a standardised questionnaire, spirometry, personal air sampling, and examination of tasks every 10 minutes (by observation). Comparison data were from a study of bus mechanics tested with similar methods. RESULTS AND CONCLUSION--Cobalt exposure was associated with tungsten carbide grinding but not with stellite grinding. Chromium exposure was associated mainly with stellite welding. Saw filers had a twofold increase in phlegm and wheeze (P < 0.01) and a threefold increase in cough, phlegm, and wheeze related to work (P < 0.001), but no increase in breathlessness. Stellite welding was associated with a significant increase in nasal symptoms and cough related to work and a small decrease in airflow (forced expiratory volume in one second/forced vital capacity (FEV1/FVC%), P < 0.05). Saw filers wet grinding with tungsten carbide had significant reductions in forced expiratory lung volumes (FEV1 and FVC, P < 0.05) and were significantly more likely to have FEV1 and FVC values in the abnormal range. Cobalt exposure (in wet grinding) and duration of work that involved tungsten carbide grinding were both associated with significant reductions in FEV1 and FVC. Average cobalt exposures in this study were about 5 micrograms/m3, well below the currently accepted permissible concentration, which suggests that the current workplace limit for cobalt may be too high.

    Statistics from

    Request Permissions

    If you wish to reuse any or all of this article please use the link below which will take you to the Copyright Clearance Center’s RightsLink service. You will be able to get a quick price and instant permission to reuse the content in many different ways.