Article Text
Abstract
The effects of 1, 10, or 40 micrograms/ml of vanadium, given for six or seven months as sodium metavanadate in drinking water on cardiovascular and biochemical variables and the electrolyte metabolism of male Sprague-Dawley rats were investigated. At the end of the exposure period, all animals exposed to vanadate had increased systolic and diastolic blood pressure. This effect was not dose dependent and heart rate and cardiac inotropism were not affected. The role of defective renal function and electrolyte metabolism in such effects was supported, in the rats exposed to 10 and 40 ppm of vanadium, by the following changes: (a) decreased Na, + K(+)-ATPase activity in the distal tubules of nephrons; (b) increased urinary excretion of potassium; (c) increase in plasma renin activity and urinary kallikrein, kininase I, and kininase II activities; (d) increased plasma aldosterone (only in the rats treated with 10 ppm of vanadium). The alterations in the rats exposed to 1 ppm of vanadium were: (a) reduced urinary calcium excretion; (b) reduced urinary kallikrein activity; (c) reduced plasma aldosterone. These results suggest that blood hypertension in rats exposed to vanadate depends on specific mechanisms of renal toxicity related to the levels of exposure.