Article Text
Abstract
Several markers of renal changes have been measured in a cohort of 50 workers exposed to elemental mercury (Hg) and in 50 control workers. After application of selection criteria 44 exposed and 49 control workers were retained for the final statistical analysis. Exposed workers excreted on average 22 micrograms Hg/g creatinine and their mean duration of exposure was 11 years. Three types of renal markers were studied--namely, functional markers (creatinine and beta 2-microglobulin in serum, urinary proteins of low or high molecular weight); cytotoxicity markers (tubular antigens and enzymes in urine), and biochemical markers (eicosanoids, thromboxane, fibronectin, kallikrein, sialic acid, glycosaminoglycans in urine, red blood cell membrane negative charges). Several bloodborne indicators of polyclonal activation were also measured to test the hypothesis that an immune mechanism might be involved in the renal toxicity of elemental Hg. The main renal changes associated with exposure to Hg were indicative of tubular cytotoxicity (increased leakage of tubular antigens and enzymes in urine) and biochemical alterations (decreased urinary excretion of some eicosanoids and glycosaminoglycans and lowering of urinary pH). The concentrations of anti-DNA antibodies and total immunoglobulin E in serum were also positively associated with the concentration of Hg in urine and in blood respectively. The renal effects were mainly found in workers excreting more than 50 micrograms Hg/g creatinine, which corroborates our previous estimate of the biological threshold of Hg in urine. As these effects, however, were unrelated to the duration of exposure and not accompanied by functional changes (for example, microproteinuria), they may not necessarily represent clinically significant alterations of renal function.