Article Text
Abstract
A spectrophotometric assay of the reductive dechlorination of halocarbons was developed and used to determine the kinetic characteristics of dechlorination of a range of haloethanes catalysed by microsomes from rat and rabbit liver. Analysis of the typical reaction of hexachloroethane shows that the reaction is catalysed by cytochrome P-450 and results in the formation of olefinic products as well as less chlorinated alkanes: in other respects the reaction resembles that known to occur with carbon tetrachloride. The dechlorination of haloethanes catalysed by a vesicular reconstituted system of cytochrome P-450 enzymes from rabbit liver was also studied and found to be similar to that catalysed by microsomes: both reductase and a phenobarbital inducible form of cytochrome P-450 were essential. There is no substantial dependence of maximum dechlorination rate on compound structure, suggesting that the reduction of substrate is not the rate limiting step in the overall reaction. The main factor in determining the apparent binding constant to the enzyme is the partition coefficient into the lipid membrane, as assessed by calculated log P values.