Article Text

Download PDFPDF

Effects of Electric Shock on Respiration in the Rabbit
  1. W. R. Lee,
  2. S. Zoledziowski
  1. Nuffield Department of Occupational Health, University of Manchester, Salford
  2. The Department of Electrical Engineering, Royal College of Advanced Technology, Salford


    Death from electric shock has been investigated on and off for just over 200 years. By the turn of the present century the three main methods of immediate death had been described. They are tetanic contraction of the respiratory muscles, ventricular fibrillation, and respiratory arrest. Since then there has been controversy over the relative importance of the last two as modes of death. For over half a century the first-aid treatment advised has been artificial respiration, based on the assumption that respiratory arrest is common in the usual limb to limb shock. The evidence for this assumption is reviewed and found to be open to question.

    An experimental investigation of the effect of forelimb to forelimb electric shock on respiration in rabbits has shown that, with currents up to about 200 mA, respiratory arrest appears to be due solely to muscular contraction. Larger currents produce respiratory arrest, usually followed by a delay before spontaneous resumption of respiration. The experimental currents have been taken up to 1 ampere, and at this level they resulted in considerable heating of the tissues. This resulted in marked macroscopic and histological changes in the forelimbs, despite which the animal breathed again spontaneously if ventricular fibrillation had not occurred.

    Statistics from

    Request Permissions

    If you wish to reuse any or all of this article please use the link below which will take you to the Copyright Clearance Center’s RightsLink service. You will be able to get a quick price and instant permission to reuse the content in many different ways.


    • * Part of this study formed part of the material for a thesis submitted by one of us (W.R.L.) to the University of London.