Article Text

Download PDFPDF
Studies of Ventilatory Capacity and Histamine Response during Exposure to Isocyanate Vapour in Polyurethane Foam Manufacture
  1. Bryan Gandevia*
  1. University Department of Medicine, Royal Melbourne Hospital, Victoria, Australia


    Complaints of respiratory symptoms amongst workers in a factory using isocyanate to produce polyurethane foam led to a study of changes in ventilatory capacity in the course of several working days. Mean decreases of the order of 0·181. were observed in the forced expiratory volume at one second in 15 employees during each of three normal working shifts. No significant change occurred on days when a process involving the liberation of isocyanate was stopped, or when the men were given an oral aminophylline compound prophylactically. An aerosol of isoprenaline failed to reverse the decrease in ventilatory capacity observed during one normal working day. Approximately half the subjects studied were found to show increased bronchial sensitivity to a histamine aerosol; all were smokers, whereas none of the non-smokers showed a significant (over 10%) reduction in ventilatory capacity after histamine. Smokers and/or positive histamine reactors tended to show a greater decrease in ventilatory capacity during a working day than non-smokers or non-reactors. The present findings, which confirm clinical reports of adverse respiratory effects of isocyanate in low concentrations, are compared with other studies of ventilatory capacity during occupational exposure to respiratory irritants.

    Statistics from

    Request Permissions

    If you wish to reuse any or all of this article please use the link below which will take you to the Copyright Clearance Center’s RightsLink service. You will be able to get a quick price and instant permission to reuse the content in many different ways.


    • * Ernest F. Atkins senior fellow in industrial medicine, University of Melbourne. Present address: Department of Medicine, University of New South Wales, Sydney, Australia.