Effects of pulsing electromagnetic fields on the prenatal and postnatal development in mice and rats: in vivo and in vitro studies

Teratology. 1990 Aug;42(2):157-70. doi: 10.1002/tera.1420420207.

Abstract

Electromagnetic fields (EMF) might have various biological effects on the developing embryo. We studied the effects of pulsing electromagnetic fields (PEMF) on the in vitro development of preimplantation mouse embryos and of early somite rat embryos as well as on the in vivo development of rat embryos. We used PEMF at frequencies of 1, 20, 50, 70, and 100 Hz with a tension of 0.6 V/m. The embryos were exposed to PEMF throughout the experimental period. PEMF at frequencies of 20 and 50 Hz were embryotoxic, inhibiting over 50% of blastocysts from hatching and further development, all within 72 h of culture. PEMF at frequencies of 50 and 70 Hz induced 22% and 30% incidence of malformations in 10.5 day old rat embryos after 48 h in culture. The main malformations were absence of telencephalic, optic, and otic vesicles and of forelimb buds. In addition, retarded growth and development manifested by fewer somites, reduction in crown-rump length, and retarded closure of the neural tube were found in many embryos. No significant pathological changes were found by TEM in PEMF-exposed embryos. Disappearance of microvilli and collapse of apical parts of endodermal cells were observed by SEM in many yolk sacs of embryos exposed to 50 and 70 Hz PEMF. A slightly reduced litter average, a reduction or increase of weight, and a delay in eye opening was observed among offspring of pregnant rats exposed throughout pregnancy to PEMF at frequencies of 20, 50, and 100 Hz. No malformations were observed among these offspring. The mechanism of PEMF-induced embryotoxicity and teratogeneity is unknown, as is the mechanism of the "protective effects" of the mother on the rat embryos exposed to PEMF in vivo.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Abnormalities, Multiple / etiology*
  • Animals
  • Blastocyst / ultrastructure
  • Culture Techniques
  • Electromagnetic Fields*
  • Embryonic Development
  • Female
  • Mice
  • Microscopy, Electron, Scanning
  • Pregnancy
  • Rats