Backward estimation of exposure to organochlorines using repeated measurements

Environ Health Perspect. 2004 May;112(6):710-6. doi: 10.1289/ehp.6761.

Abstract

Great Lakes sport-caught fish are contaminated with various organochlorines (OCs) such as polychlorinated biphenyls (PCBs). Through consumption of these fish, humans are subject to continuing levels of OC contamination. To assess potential adverse effects of past exposure, we compared three different backward extrapolation models. The data originated from OC determinations in a cohort of anglers and their families. Repeated PCB measurements collected in the 1970s, 1980s, and 1990s were used when testing the backward extrapolations. We applied a simple and a complex decay model based on assumptions used in previous studies; a third was a regression model incorporating markers of OC intake and loss. These techniques provided past exposure estimates. Intraclass correlation coefficients (ICCs) were calculated comparing measured and estimated PCB values. ICC values for the regression model equations were 0.77 and 0.89; ICC values for the simple and complex decay models were significantly lower, with ranges of 0.07-0.45 and -0.14-0.69, respectively. Plots showing trends of OC concentrations in fish and humans indicate comparable increases and decreases of PCB in fish and humans, with fish concentrations peaking approximately 10 years before that in humans. Our findings suggest that one should be cautious when using simple backward extrapolation techniques to estimate OC exposure in situations involving changing environmental exposures. Whenever repeated measurements are available, regression analyses seem to produce more accurate backward estimations of exposure.

Publication types

  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Adult
  • Animals
  • Breast Feeding
  • Cohort Studies
  • Diet
  • Environmental Exposure*
  • Female
  • Fishes*
  • Food Contamination*
  • Great Lakes Region
  • Half-Life
  • Humans
  • Hydrocarbons, Chlorinated*
  • Infant, Newborn
  • Insecticides / analysis*
  • Insecticides / pharmacokinetics*
  • Models, Theoretical*
  • Pregnancy
  • Regression Analysis
  • Retrospective Studies
  • Sensitivity and Specificity

Substances

  • Hydrocarbons, Chlorinated
  • Insecticides