Semin Liver Dis 2011; 31(2): 173-187
DOI: 10.1055/s-0031-1276646
© Thieme Medical Publishers

Genetics of Hepatobiliary Carcinogenesis

Jean-Charles Nault1 , 2 , Jessica Zucman-Rossi1 , 2 , 3
  • 1Inserm, U674, Génomique fonctionnelle des tumeurs solides, Paris, France
  • 2Université Paris Descartes, Faculté de médecine, Paris, France
  • 3Assistance Publique-Hôpitaux de Paris, Department of oncology, HEGP, Paris, France
Further Information

Publication History

Publication Date:
02 May 2011 (online)

ABSTRACT

Hepatocellular carcinoma (HCC) and cholangiocarcinoma (CC) are two leading causes of cancer death in the world. Liver carcinogenesis is driven by genetic alterations in combination with viral and environmental factors. β-catenin and P53 mutations represent the two main genetic alterations described in HCC, and P53 and KRAS mutations in CC, but rare genetic alterations could be particularly valuable if they constitute drug-able targets (such as PIK3CA or EGFR mutations). Recent progress using global genomic analysis has highlighted the marked genetic heterogeneity of this disease and this approach has also been used to assess prognosis or refine the diagnosis. The validation of sorafenib as the first targeted therapy useful in HCC has opened up new prospects for biotherapy in this cancer. In the future, mapping of genetic alterations will be essential to adapt treatment to HCC and CC biology.

REFERENCES

  • 1 El-Serag H B, Rudolph K L. Hepatocellular carcinoma: epidemiology and molecular carcinogenesis.  Gastroenterology. 2007;  132 (7) 2557-2576
  • 2 Tanabe K K, Lemoine A, Finkelstein D M et al.. Epidermal growth factor gene functional polymorphism and the risk of hepatocellular carcinoma in patients with cirrhosis.  JAMA. 2008;  299 (1) 53-60
  • 3 Zhang H, Zhai Y, Hu Z et al.. Genome-wide association study identifies 1p36.22 as a new susceptibility locus for hepatocellular carcinoma in chronic hepatitis B virus carriers.  Nat Genet. 2010;  42 (9) 755-758
  • 4 Malhi H, Gores G J. Cholangiocarcinoma: modern advances in understanding a deadly old disease.  J Hepatol. 2006;  45 (6) 856-867
  • 5 Benhamouche S, Decaens T, Perret C, Colnot S. Wnt/beta-catenin pathway and liver metabolic zonation: a new player for an old concept.  Med Sci (Paris). 2006;  22 (11) 904-906
  • 6 Micsenyi A, Tan X, Sneddon T, Luo J H, Michalopoulos G K, Monga S P. Beta-catenin is temporally regulated during normal liver development.  Gastroenterology. 2004;  126 (4) 1134-1146
  • 7 Cadoret A, Ovejero C, Terris B et al.. New targets of beta-catenin signaling in the liver are involved in the glutamine metabolism.  Oncogene. 2002;  21 (54) 8293-8301
  • 8 Thompson M D, Monga S P. WNT/beta-catenin signaling in liver health and disease.  Hepatology. 2007;  45 (5) 1298-1305
  • 9 Monga S P, Monga H K, Tan X, Mulé K, Pediaditakis P, Michalopoulos G K. Beta-catenin antisense studies in embryonic liver cultures: role in proliferation, apoptosis, and lineage specification.  Gastroenterology. 2003;  124 (1) 202-216
  • 10 Monga S P, Pediaditakis P, Mule K, Stolz D B, Michalopoulos G K. Changes in WNT/beta-catenin pathway during regulated growth in rat liver regeneration.  Hepatology. 2001;  33 (5) 1098-1109
  • 11 Rebouissou S, Couchy G, Libbrecht L et al.. The beta-catenin pathway is activated in focal nodular hyperplasia but not in cirrhotic FNH-like nodules.  J Hepatol. 2008;  49 (1) 61-71
  • 12 de La Coste A, Romagnolo B, Billuart P et al.. Somatic mutations of the beta-catenin gene are frequent in mouse and human hepatocellular carcinomas.  Proc Natl Acad Sci U S A. 1998;  95 (15) 8847-8851
  • 13 Audard V, Grimber G, Elie C et al.. Cholestasis is a marker for hepatocellular carcinomas displaying beta-catenin mutations.  J Pathol. 2007;  212 (3) 345-352
  • 14 Hsu H C, Jeng Y M, Mao T L, Chu J S, Lai P L, Peng S Y. Beta-catenin mutations are associated with a subset of low-stage hepatocellular carcinoma negative for hepatitis B virus and with favorable prognosis.  Am J Pathol. 2000;  157 (3) 763-770
  • 15 Mao T L, Chu J S, Jeng Y M, Lai P L, Hsu H C. Expression of mutant nuclear beta-catenin correlates with non-invasive hepatocellular carcinoma, absence of portal vein spread, and good prognosis.  J Pathol. 2001;  193 (1) 95-101
  • 16 Legoix P, Bluteau O, Bayer J et al.. Beta-catenin mutations in hepatocellular carcinoma correlate with a low rate of loss of heterozygosity.  Oncogene. 1999;  18 (27) 4044-4046
  • 17 Imbeaud S, Ladeiro Y, Zucman-Rossi J. Identification of novel oncogenes and tumor suppressors in hepatocellular carcinoma.  Semin Liver Dis. 2010;  30 (1) 75-86
  • 18 Laurent-Puig P, Legoix P, Bluteau O et al.. Genetic alterations associated with hepatocellular carcinomas define distinct pathways of hepatocarcinogenesis.  Gastroenterology. 2001;  120 (7) 1763-1773
  • 19 Laurent-Puig P, Zucman-Rossi J. Genetics of hepatocellular tumors.  Oncogene. 2006;  25 (27) 3778-3786
  • 20 Zucman-Rossi J. Molecular classification of hepatocellular carcinoma.  Dig Liver Dis. 2010;  42 (Suppl 3) S235-S241
  • 21 Miyoshi Y, Iwao K, Nagasawa Y et al.. Activation of the beta-catenin gene in primary hepatocellular carcinomas by somatic alterations involving exon 3.  Cancer Res. 1998;  58 (12) 2524-2527
  • 22 Terris B, Pineau P, Bregeaud L et al.. Close correlation between beta-catenin gene alterations and nuclear accumulation of the protein in human hepatocellular carcinomas.  Oncogene. 1999;  18 (47) 6583-6588
  • 23 Yamashita T, Budhu A, Forgues M, Wang X W. Activation of hepatic stem cell marker EpCAM by Wnt-beta-catenin signaling in hepatocellular carcinoma.  Cancer Res. 2007;  67 (22) 10831-10839
  • 24 Merle P, Kim M, Herrmann M et al.. Oncogenic role of the frizzled-7/beta-catenin pathway in hepatocellular carcinoma.  J Hepatol. 2005;  43 (5) 854-862
  • 25 Wong C M, Fan S T, Ng I O. beta-Catenin mutation and overexpression in hepatocellular carcinoma: clinicopathologic and prognostic significance.  Cancer. 2001;  92 (1) 136-145
  • 26 Cieply B, Zeng G, Proverbs-Singh T, Geller D A, Monga S P. Unique phenotype of hepatocellular cancers with exon-3 mutations in beta-catenin gene.  Hepatology. 2009;  49 (3) 821-831
  • 27 Peng S Y, Chen W J, Lai P L, Jeng Y M, Sheu J C, Hsu H C. High alpha-fetoprotein level correlates with high stage, early recurrence and poor prognosis of hepatocellular carcinoma: significance of hepatitis virus infection, age, p53 and beta-catenin mutations.  Int J Cancer. 2004;  112 (1) 44-50
  • 28 Zulehner G, Mikula M, Schneller D et al.. Nuclear beta-catenin induces an early liver progenitor phenotype in hepatocellular carcinoma and promotes tumor recurrence.  Am J Pathol. 2010;  176 (1) 472-481
  • 29 Satoh S, Daigo Y, Furukawa Y et al.. AXIN1 mutations in hepatocellular carcinomas, and growth suppression in cancer cells by virus-mediated transfer of AXIN1.  Nat Genet. 2000;  24 (3) 245-250
  • 30 Zucman-Rossi J, Benhamouche S, Godard C et al.. Differential effects of inactivated Axin1 and activated beta-catenin mutations in human hepatocellular carcinomas.  Oncogene. 2007;  26 (5) 774-780
  • 31 Ishizaki Y, Ikeda S, Fujimori M et al.. Immunohistochemical analysis and mutational analyses of beta-catenin, Axin family and APC genes in hepatocellular carcinomas.  Int J Oncol. 2004;  24 (5) 1077-1083
  • 32 Taniguchi K, Roberts L R, Aderca I N et al.. Mutational spectrum of beta-catenin, AXIN1, and AXIN2 in hepatocellular carcinomas and hepatoblastomas.  Oncogene. 2002;  21 (31) 4863-4871
  • 33 Boyault S, Rickman D S, de Reyniès A et al.. Transcriptome classification of HCC is related to gene alterations and to new therapeutic targets.  Hepatology. 2007;  45 (1) 42-52
  • 34 Matsumura T, Makino R, Mitamura K. Frequent down-regulation of E-cadherin by genetic and epigenetic changes in the malignant progression of hepatocellular carcinomas.  Clin Cancer Res. 2001;  7 (3) 594-599
  • 35 Kemp Z, Thirlwell C, Sieber O, Silver A, Tomlinson I. An update on the genetics of colorectal cancer.  Hum Mol Genet. 2004;  13 (Spec No 2) R177-R185
  • 36 Edamoto Y, Hara A, Biernat W et al.. Alterations of RB1, p53 and Wnt pathways in hepatocellular carcinomas associated with hepatitis C, hepatitis B and alcoholic liver cirrhosis.  Int J Cancer. 2003;  106 (3) 334-341
  • 37 Zucman-Rossi J, Jeannot E, Nhieu J T et al.. Genotype-phenotype correlation in hepatocellular adenoma: new classification and relationship with HCC.  Hepatology. 2006;  43 (3) 515-524
  • 38 Rebouissou S, Bioulac-Sage P, Zucman-Rossi J. Molecular pathogenesis of focal nodular hyperplasia and hepatocellular adenoma.  J Hepatol. 2008;  48 (1) 163-170
  • 39 Van der Borght S, Libbrecht L, Katoonizadeh A et al.. Nuclear beta-catenin staining and absence of steatosis are indicators of hepatocellular adenomas with an increased risk of malignancy.  Histopathology. 2007;  51 (6) 855-856
  • 40 Rebouissou S, Amessou M, Couchy G et al.. Frequent in-frame somatic deletions activate gp130 in inflammatory hepatocellular tumours.  Nature. 2009;  457 (7226) 200-204
  • 41 Puisieux A, Ponchel F, Ozturk M. p53 as a growth suppressor gene in HBV-related hepatocellular carcinoma cells.  Oncogene. 1993;  8 (2) 487-490
  • 42 Bressac B, Kew M, Wands J, Ozturk M. Selective G to T mutations of p53 gene in hepatocellular carcinoma from southern Africa.  Nature. 1991;  350 (6317) 429-431
  • 43 Hsu I C, Metcalf R A, Sun T, Welsh J A, Wang N J, Harris C C. Mutational hotspot in the p53 gene in human hepatocellular carcinomas.  Nature. 1991;  350 (6317) 427-428
  • 44 Ozturk M. p53 mutation in hepatocellular carcinoma after aflatoxin exposure.  Lancet. 1991;  338 (8779) 1356-1359
  • 45 Hussain S P, Schwank J, Staib F, Wang X W, Harris C C. TP53 mutations and hepatocellular carcinoma: insights into the etiology and pathogenesis of liver cancer.  Oncogene. 2007;  26 (15) 2166-2176
  • 46 Madden C R, Finegold M J, Slagle B L. Altered DNA mutation spectrum in aflatoxin b1-treated transgenic mice that express the hepatitis B virus x protein.  J Virol. 2002;  76 (22) 11770-11774
  • 47 Wang B, Huang G, Wang D et al.. Null genotypes of GSTM1 and GSTT1 contribute to hepatocellular carcinoma risk: evidence from an updated meta-analysis.  J Hepatol. 2010;  53 (3) 508-518
  • 48 Karachristos A, Liloglou T, Field J K, Deligiorgi E, Kouskouni E, Spandidos D A. Microsatellite instability and p53 mutations in hepatocellular carcinoma.  Mol Cell Biol Res Commun. 1999;  2 (3) 155-161
  • 49 Zhang X, Xu H J, Murakami Y et al.. Deletions of chromosome 13q, mutations in retinoblastoma 1, and retinoblastoma protein state in human hepatocellular carcinoma.  Cancer Res. 1994;  54 (15) 4177-4182
  • 50 Biden K, Young J, Buttenshaw R et al.. Frequency of mutation and deletion of the tumor suppressor gene CDKN2A (MTS1/p16) in hepatocellular carcinoma from an Australian population.  Hepatology. 1997;  25 (3) 593-597
  • 51 Matsuda Y, Ichida T, Matsuzawa J, Sugimura K, Asakura H. p16(INK4) is inactivated by extensive CpG methylation in human hepatocellular carcinoma.  Gastroenterology. 1999;  116 (2) 394-400
  • 52 Liew C T, Li H M, Lo K W et al.. High frequency of p16INK4A gene alterations in hepatocellular carcinoma.  Oncogene. 1999;  18 (3) 789-795
  • 53 Anzola M, Cuevas N, López-Martínez M, Saiz A, Burgos J J, Martínez de Pancorboa M. P14ARF gene alterations in human hepatocellular carcinoma.  Eur J Gastroenterol Hepatol. 2004;  16 (1) 19-26
  • 54 Peng C Y, Chen T C, Hung S P et al.. Genetic alterations of INK4alpha/ARF locus and p53 in human hepatocellular carcinoma.  Anticancer Res. 2002;  22 (2B) 1265-1271
  • 55 Grivennikov S I, Greten F R, Karin M. Immunity, inflammation, and cancer.  Cell. 2010;  140 (6) 883-899
  • 56 Grivennikov S, Karin M. Autocrine IL-6 signaling: a key event in tumorigenesis?.  Cancer Cell. 2008;  13 (1) 7-9
  • 57 Bromberg J F, Wrzeszczynska M H, Devgan G et al.. Stat3 as an oncogene.  Cell. 1999;  98 (3) 295-303
  • 58 Nault J C, Zucman-Rossi J. Building a bridge between obesity, inflammation and liver carcinogenesis.  J Hepatol. 2010;  53 (4) 777-779
  • 59 Grivennikov S, Karin E, Terzic J et al.. IL-6 and Stat3 are required for survival of intestinal epithelial cells and development of colitis-associated cancer.  Cancer Cell. 2009;  15 (2) 103-113
  • 60 Yoshikawa H, Matsubara K, Qian G S et al.. SOCS-1, a negative regulator of the JAK/STAT pathway, is silenced by methylation in human hepatocellular carcinoma and shows growth-suppression activity.  Nat Genet. 2001;  28 (1) 29-35
  • 61 Okochi O, Hibi K, Sakai M et al.. Methylation-mediated silencing of SOCS-1 gene in hepatocellular carcinoma derived from cirrhosis.  Clin Cancer Res. 2003;  9 (14) 5295-5298
  • 62 Calvisi D F, Ladu S, Gorden A et al.. Ubiquitous activation of Ras and Jak/Stat pathways in human HCC.  Gastroenterology. 2006;  130 (4) 1117-1128
  • 63 Niwa Y, Kanda H, Shikauchi Y et al.. Methylation silencing of SOCS-3 promotes cell growth and migration by enhancing JAK/STAT and FAK signalings in human hepatocellular carcinoma.  Oncogene. 2005;  24 (42) 6406-6417
  • 64 Wong C I, Yap H L, Lim S G, Guo J Y, Goh B C, Lee S C. Lack of somatic ErbB2 tyrosine kinase domain mutations in hepatocellular carcinoma.  Hepatol Res. 2008;  38 (8) 838-841
  • 65 Bekaii-Saab T, Williams N, Plass C, Calero M V, Eng C. A novel mutation in the tyrosine kinase domain of ERBB2 in hepatocellular carcinoma.  BMC Cancer. 2006;  6 278
  • 66 Su M C, Lien H C, Jeng Y M. Absence of epidermal growth factor receptor exon 18-21 mutation in hepatocellular carcinoma.  Cancer Lett. 2005;  224 (1) 117-121
  • 67 Xian Z H, Zhang S H, Cong W M, Wu W Q, Wu M C. Overexpression/amplification of HER-2/neu is uncommon in hepatocellular carcinoma.  J Clin Pathol. 2005;  58 (5) 500-503
  • 68 Collier J D, Guo K, Mathew J et al.. c-erbB-2 oncogene expression in hepatocellular carcinoma and cholangiocarcinoma.  J Hepatol. 1992;  14 (2-3) 377-380
  • 69 Nussbaum T, Samarin J, Ehemann V et al.. Autocrine insulin-like growth factor-II stimulation of tumor cell migration is a progression step in human hepatocarcinogenesis.  Hepatology. 2008;  48 (1) 146-156
  • 70 Tovar V, Alsinet C, Villanueva A et al.. IGF activation in a molecular subclass of hepatocellular carcinoma and pre-clinical efficacy of IGF-1R blockage.  J Hepatol. 2010;  52 (4) 550-559
  • 71 Oka Y, Waterland R A, Killian J K et al.. M6P/IGF2R tumor suppressor gene mutated in hepatocellular carcinomas in Japan.  Hepatology. 2002;  35 (5) 1153-1163
  • 72 De Souza A T, Hankins G R, Washington M K, Orton T C, Jirtle R L. M6P/IGF2R gene is mutated in human hepatocellular carcinomas with loss of heterozygosity.  Nat Genet. 1995;  11 (4) 447-449
  • 73 Kaposi-Novak P, Lee J S, Gòmez-Quiroz L, Coulouarn C, Factor V M, Thorgeirsson S S. Met-regulated expression signature defines a subset of human hepatocellular carcinomas with poor prognosis and aggressive phenotype.  J Clin Invest. 2006;  116 (6) 1582-1595
  • 74 Ueki T, Fujimoto J, Suzuki T, Yamamoto H, Okamoto E. Expression of hepatocyte growth factor and its receptor c-met proto-oncogene in hepatocellular carcinoma.  Hepatology. 1997;  25 (4) 862-866
  • 75 Park W S, Dong S M, Kim S Y et al.. Somatic mutations in the kinase domain of the Met/hepatocyte growth factor receptor gene in childhood hepatocellular carcinomas.  Cancer Res. 1999;  59 (2) 307-310
  • 76 Ma P C, Jagadeeswaran R, Jagadeesh S et al.. Functional expression and mutations of c-Met and its therapeutic inhibition with SU11274 and small interfering RNA in non-small cell lung cancer.  Cancer Res. 2005;  65 (4) 1479-1488
  • 77 Jun H T, Sun J, Rex K et al.. AMG 102, a fully human anti-hepatocyte growth factor/scatter factor neutralizing antibody, enhances the efficacy of temozolomide or docetaxel in U-87 MG cells and xenografts.  Clin Cancer Res. 2007;  13 (22 Pt 1) 6735-6742
  • 78 Yang D H, Huang W, Cui J et al.. The relationship between point mutation and abnormal expression of c-fms oncogene in hepatocellular carcinoma.  Hepatobiliary Pancreat Dis Int. 2004;  3 (1) 86-89
  • 79 Ridge S A, Worwood M, Oscier D, Jacobs A, Padua R A. FMS mutations in myelodysplastic, leukemic, and normal subjects.  Proc Natl Acad Sci U S A. 1990;  87 (4) 1377-1380
  • 80 Whittaker S, Marais R, Zhu A X. The role of signaling pathways in the development and treatment of hepatocellular carcinoma.  Oncogene. 2010;  29 (36) 4989-5005
  • 81 Leon M, Kew M C. Analysis of ras gene mutations in hepatocellular carcinoma in southern African blacks.  Anticancer Res. 1995;  15 (3) 859-861
  • 82 Tsuda H, Hirohashi S, Shimosato Y, Ino Y, Yoshida T, Terada M. Low incidence of point mutation of c-Ki-ras and N-ras oncogenes in human hepatocellular carcinoma.  Jpn J Cancer Res. 1989;  80 (3) 196-199
  • 83 Challen C, Guo K, Collier J D, Cavanagh D, Bassendine M F. Infrequent point mutations in codons 12 and 61 of ras oncogenes in human hepatocellular carcinomas.  J Hepatol. 1992;  14 (2-3) 342-346
  • 84 Weihrauch M, Benicke M, Lehnert G, Wittekind C, Wrbitzky R, Tannapfel A. Frequent k- ras -2 mutations and p16(INK4A)methylation in hepatocellular carcinomas in workers exposed to vinyl chloride.  Br J Cancer. 2001;  84 (7) 982-989
  • 85 Weihrauch M, Benick M, Lehner G et al.. High prevalence of K-ras-2 mutations in hepatocellular carcinomas in workers exposed to vinyl chloride.  Int Arch Occup Environ Health. 2001;  74 (6) 405-410
  • 86 De Vivo I, Marion M J, Smith S J, Carney W P, Brandt-Rauf P W. Mutant c-Ki-ras p21 protein in chemical carcinogenesis in humans exposed to vinyl chloride.  Cancer Causes Control. 1994;  5 (3) 273-278
  • 87 Tannapfel A, Sommerer F, Benicke M et al.. Mutations of the BRAF gene in cholangiocarcinoma but not in hepatocellular carcinoma.  Gut. 2003;  52 (5) 706-712
  • 88 Yeo W, Wong N, Wong W L, Lai P B, Zhong S, Johnson P J. High frequency of promoter hypermethylation of RASSF1A in tumor and plasma of patients with hepatocellular carcinoma.  Liver Int. 2005;  25 (2) 266-272
  • 89 Zhang Y J, Ahsan H, Chen Y et al.. High frequency of promoter hypermethylation of RASSF1A and p16 and its relationship to aflatoxin B1-DNA adduct levels in human hepatocellular carcinoma.  Mol Carcinog. 2002;  35 (2) 85-92
  • 90 Villanueva A, Chiang D Y, Newell P et al.. Pivotal role of mTOR signaling in hepatocellular carcinoma.  Gastroenterology. 2008;  135 (6) 1972-1983, 1983, e1–e11
  • 91 Chiang D Y, Villanueva A, Hoshida Y et al.. Focal gains of VEGFA and molecular classification of hepatocellular carcinoma.  Cancer Res. 2008;  68 (16) 6779-6788
  • 92 Wang L, Wang W L, Zhang Y, Guo S P, Zhang J, Li Q L. Epigenetic and genetic alterations of PTEN in hepatocellular carcinoma.  Hepatol Res. 2007;  37 (5) 389-396
  • 93 Yao Y J, Ping X L, Zhang H et al.. PTEN/MMAC1 mutations in hepatocellular carcinomas.  Oncogene. 1999;  18 (20) 3181-3185
  • 94 Lee J W, Soung Y H, Kim S Y et al.. PIK3CA gene is frequently mutated in breast carcinomas and hepatocellular carcinomas.  Oncogene. 2005;  24 (8) 1477-1480
  • 95 Tanaka Y, Kanai F, Tada M et al.. Absence of PIK3CA hotspot mutations in hepatocellular carcinoma in Japanese patients.  Oncogene. 2006;  25 (20) 2950-2952
  • 96 Monaco A P. The role of mTOR inhibitors in the management of posttransplant malignancy.  Transplantation. 2009;  87 (2) 157-163
  • 97 Nakau M, Miyoshi H, Seldin M F, Imamura M, Oshima M, Taketo M M. Hepatocellular carcinoma caused by loss of heterozygosity in Lkb1 gene knockout mice.  Cancer Res. 2002;  62 (16) 4549-4553
  • 98 Kim C J, Cho Y G, Park J Y et al.. Genetic analysis of the LKB1/STK11 gene in hepatocellular carcinomas.  Eur J Cancer. 2004;  40 (1) 136-141
  • 99 Yakicier M C, Irmak M B, Romano A, Kew M, Ozturk M. Smad2 and Smad4 gene mutations in hepatocellular carcinoma.  Oncogene. 1999;  18 (34) 4879-4883
  • 100 Kawate S, Takenoshita S, Ohwada S et al.. Mutation analysis of transforming growth factor beta type II receptor, Smad2, and Smad4 in hepatocellular carcinoma.  Int J Oncol. 1999;  14 (1) 127-131
  • 101 Ching Y P, Wong C M, Chan S F et al.. Deleted in liver cancer (DLC) 2 encodes a RhoGAP protein with growth suppressor function and is underexpressed in hepatocellular carcinoma.  J Biol Chem. 2003;  278 (12) 10824-10830
  • 102 Ng I O, Liang Z D, Cao L, Lee T K. DLC-1 is deleted in primary hepatocellular carcinoma and exerts inhibitory effects on the proliferation of hepatoma cell lines with deleted DLC-1.  Cancer Res. 2000;  60 (23) 6581-6584
  • 103 Wong C M, Lee J M, Ching Y P, Jin D Y, Ng I O. Genetic and epigenetic alterations of DLC-1 gene in hepatocellular carcinoma.  Cancer Res. 2003;  63 (22) 7646-7651
  • 104 Bluteau O, Jeannot E, Bioulac-Sage P et al.. Bi-allelic inactivation of TCF1 in hepatic adenomas.  Nat Genet. 2002;  32 (2) 312-315
  • 105 Khan S A, Thomas H C, Toledano M B, Cox I J, Taylor-Robinson S D. p53 Mutations in human cholangiocarcinoma: a review.  Liver Int. 2005;  25 (4) 704-716
  • 106 Tannapfel A, Benicke M, Katalinic A et al.. Frequency of p16(INK4A) alterations and K-ras mutations in intrahepatic cholangiocarcinoma of the liver.  Gut. 2000;  47 (5) 721-727
  • 107 Ahrendt S A, Eisenberger C F, Yip L et al.. Chromosome 9p21 loss and p16 inactivation in primary sclerosing cholangitis-associated cholangiocarcinoma.  J Surg Res. 1999;  84 (1) 88-93
  • 108 Tannapfel A, Sommerer F, Benicke M et al.. Genetic and epigenetic alterations of the INK4a-ARF pathway in cholangiocarcinoma.  J Pathol. 2002;  197 (5) 624-631
  • 109 Lee S, Kim W H, Jung H Y, Yang M H, Kang G H. Aberrant CpG island methylation of multiple genes in intrahepatic cholangiocarcinoma.  Am J Pathol. 2002;  161 (3) 1015-1022
  • 110 Taniai M, Grambihler A, Higuchi H et al.. Mcl-1 mediates tumor necrosis factor-related apoptosis-inducing ligand resistance in human cholangiocarcinoma cells.  Cancer Res. 2004;  64 (10) 3517-3524
  • 111 Tozawa T, Tamura G, Honda T et al.. Promoter hypermethylation of DAP-kinase is associated with poor survival in primary biliary tract carcinoma patients.  Cancer Sci. 2004;  95 (9) 736-740
  • 112 Taniai M, Higuchi H, Burgart L J, Gores G J. p16INK4a promoter mutations are frequent in primary sclerosing cholangitis (PSC) and PSC-associated cholangiocarcinoma.  Gastroenterology. 2002;  123 (4) 1090-1098
  • 113 Weismüller T J, Wedemeyer J, Kubicka S, Strassburg C P, Manns M P. The challenges in primary sclerosing cholangitis—aetiopathogenesis, autoimmunity, management and malignancy.  J Hepatol. 2008;  48 (Suppl 1) S38-S57
  • 114 Isomoto H, Mott J L, Kobayashi S et al.. Sustained IL-6/STAT-3 signaling in cholangiocarcinoma cells due to SOCS-3 epigenetic silencing.  Gastroenterology. 2007;  132 (1) 384-396
  • 115 Wehbe H, Henson R, Meng F, Mize-Berge J, Patel T. Interleukin-6 contributes to growth in cholangiocarcinoma cells by aberrant promoter methylation and gene expression.  Cancer Res. 2006;  66 (21) 10517-10524
  • 116 Park J, Tadlock L, Gores G J, Patel T. Inhibition of interleukin 6-mediated mitogen-activated protein kinase activation attenuates growth of a cholangiocarcinoma cell line.  Hepatology. 1999;  30 (5) 1128-1133
  • 117 Isomoto H, Kobayashi S, Werneburg N W et al.. Interleukin 6 upregulates myeloid cell leukemia-1 expression through a STAT3 pathway in cholangiocarcinoma cells.  Hepatology. 2005;  42 (6) 1329-1338
  • 118 Kobayashi S, Werneburg N W, Bronk S F, Kaufmann S H, Gores G J. Interleukin-6 contributes to Mcl-1 up-regulation and TRAIL resistance via an Akt-signaling pathway in cholangiocarcinoma cells.  Gastroenterology. 2005;  128 (7) 2054-2065
  • 119 Hodge D R, Peng B, Cherry J C et al.. Interleukin 6 supports the maintenance of p53 tumor suppressor gene promoter methylation.  Cancer Res. 2005;  65 (11) 4673-4682
  • 120 Isa T, Tomita S, Nakachi A et al.. Analysis of microsatellite instability, K-ras gene mutation and p53 protein overexpression in intrahepatic cholangiocarcinoma.  Hepatogastroenterology. 2002;  49 (45) 604-608
  • 121 Ahrendt S A, Rashid A, Chow J T, Eisenberger C F, Pitt H A, Sidransky D. p53 overexpression and K-ras gene mutations in primary sclerosing cholangitis-associated biliary tract cancer.  J Hepatobiliary Pancreat Surg. 2000;  7 (4) 426-431
  • 122 Ohashi K, Nakajima Y, Kanehiro H et al.. Ki-ras mutations and p53 protein expressions in intrahepatic cholangiocarcinomas: relation to gross tumor morphology.  Gastroenterology. 1995;  109 (5) 1612-1617
  • 123 Rijken A M, van Gulik T M, Polak M M, Sturm P D, Gouma D J, Offerhaus G J. Diagnostic and prognostic value of incidence of K-ras codon 12 mutations in resected distal bile duct carcinoma.  J Surg Oncol. 1998;  68 (3) 187-192
  • 124 Kubicka S, Kühnel F, Flemming P et al.. K-ras mutations in the bile of patients with primary sclerosing cholangitis.  Gut. 2001;  48 (3) 403-408
  • 125 Goldenberg D, Rosenbaum E, Argani P et al.. The V599E BRAF mutation is uncommon in biliary tract cancers.  Mod Pathol. 2004;  17 (11) 1386-1391
  • 126 Tada M, Omata M, Ohto M. High incidence of ras gene mutation in intrahepatic cholangiocarcinoma.  Cancer. 1992;  69 (5) 1115-1118
  • 127 Kiba T, Tsuda H, Pairojkul C, Inoue S, Sugimura T, Hirohashi S. Mutations of the p53 tumor suppressor gene and the ras gene family in intrahepatic cholangiocellular carcinomas in Japan and Thailand.  Mol Carcinog. 1993;  8 (4) 312-318
  • 128 Sugimachi K, Taguchi K, Aishima S et al.. Altered expression of beta-catenin without genetic mutation in intrahepatic cholangiocarcinoma.  Mod Pathol. 2001;  14 (9) 900-905
  • 129 Tokumoto N, Ikeda S, Ishizaki Y et al.. Immunohistochemical and mutational analyses of Wnt signaling components and target genes in intrahepatic cholangiocarcinomas.  Int J Oncol. 2005;  27 (4) 973-980
  • 130 Gwak G Y, Yoon J H, Shin C M et al.. Detection of response-predicting mutations in the kinase domain of the epidermal growth factor receptor gene in cholangiocarcinomas.  J Cancer Res Clin Oncol. 2005;  131 (10) 649-652
  • 131 Leone F, Cavalloni G, Pignochino Y et al.. Somatic mutations of epidermal growth factor receptor in bile duct and gallbladder carcinoma.  Clin Cancer Res. 2006;  12 (6) 1680-1685
  • 132 Nakazawa K, Dobashi Y, Suzuki S, Fujii H, Takeda Y, Ooi A. Amplification and overexpression of c-erbB-2, epidermal growth factor receptor, and c-met in biliary tract cancers.  J Pathol. 2005;  206 (3) 356-365
  • 133 Yoshikawa D, Ojima H, Iwasaki M et al.. Clinicopathological and prognostic significance of EGFR, VEGF, and HER2 expression in cholangiocarcinoma.  Br J Cancer. 2008;  98 (2) 418-425
  • 134 Shibata T, Kokubu A, Gotoh M et al.. Genetic alteration of Keap1 confers constitutive Nrf2 activation and resistance to chemotherapy in gallbladder cancer.  Gastroenterology. 2008;  135 (4) 1358-1368, 1368, e1–e4
  • 135 Hahn S A, Bartsch D, Schroers A et al.. Mutations of the DPC4/Smad4 gene in biliary tract carcinoma.  Cancer Res. 1998;  58 (6) 1124-1126
  • 136 Riener M O, Bawohl M, Clavien P A, Jochum W. Rare PIK3CA hotspot mutations in carcinomas of the biliary tract.  Genes Chromosomes Cancer. 2008;  47 (5) 363-367
  • 137 Endo K, Ashida K, Miyake N, Terada T. E-cadherin gene mutations in human intrahepatic cholangiocarcinoma.  J Pathol. 2001;  193 (3) 310-317
  • 138 Marongiu F, Doratiotto S, Montisci S, Pani P, Laconi E. Liver repopulation and carcinogenesis: two sides of the same coin?.  Am J Pathol. 2008;  172 (4) 857-864
  • 139 Roskams T. Different types of liver progenitor cells and their niches.  J Hepatol. 2006;  45 (1) 1-4
  • 140 Roskams T A, Theise N D, Balabaud C et al.. Nomenclature of the finer branches of the biliary tree: canals, ductules, and ductular reactions in human livers.  Hepatology. 2004;  39 (6) 1739-1745
  • 141 Clouston A D, Powell E E, Walsh M J, Richardson M M, Demetris A J, Jonsson J R. Fibrosis correlates with a ductular reaction in hepatitis C: roles of impaired replication, progenitor cells and steatosis.  Hepatology. 2005;  41 (4) 809-818
  • 142 Richardson M M, Jonsson J R, Powell E E et al.. Progressive fibrosis in nonalcoholic steatohepatitis: association with altered regeneration and a ductular reaction.  Gastroenterology. 2007;  133 (1) 80-90
  • 143 Ziol M, Nault J C, Aout M et al.. Intermediate hepatobiliary cells predict an increased risk of hepatocarcinogenesis in patients with hepatitis C virus-related cirrhosis.  Gastroenterology. 2010;  139 (1) 335-343, e2
  • 144 Mishra L, Banker T, Murray J et al.. Liver stem cells and hepatocellular carcinoma.  Hepatology. 2009;  49 (1) 318-329
  • 145 Lee J S, Heo J, Libbrecht L et al.. A novel prognostic subtype of human hepatocellular carcinoma derived from hepatic progenitor cells.  Nat Med. 2006;  12 (4) 410-416
  • 146 Hoshida Y, Nijman S M, Kobayashi M et al.. Integrative transcriptome analysis reveals common molecular subclasses of human hepatocellular carcinoma.  Cancer Res. 2009;  69 (18) 7385-7392
  • 147 Libbrecht L. Hepatic progenitor cells in human liver tumor development.  World J Gastroenterol. 2006;  12 (39) 6261-6265
  • 148 Haratake J, Hashimoto H. An immunohistochemical analysis of 13 cases with combined hepatocellular and cholangiocellular carcinoma.  Liver. 1995;  15 (1) 9-15
  • 149 Komuta M, Spee B, Vander Borght S et al.. Clinicopathological study on cholangiolocellular carcinoma suggesting hepatic progenitor cell origin.  Hepatology. 2008;  47 (5) 1544-1556
  • 150 Llovet J M, Ricci S, Mazzaferro V SHARP Investigators Study Group et al. Sorafenib in advanced hepatocellular carcinoma.  N Engl J Med. 2008;  359 (4) 378-390
  • 151 Cheng A L, Kang Y K, Chen Z et al.. Efficacy and safety of sorafenib in patients in the Asia-Pacific region with advanced hepatocellular carcinoma: a phase III randomised, double-blind, placebo-controlled trial.  Lancet Oncol. 2009;  10 (1) 25-34
  • 152 Abou-Alfa G K, Schwartz L, Ricci S et al.. Phase II study of sorafenib in patients with advanced hepatocellular carcinoma.  J Clin Oncol. 2006;  24 (26) 4293-4300
  • 153 Flaherty K T, Puzanov I, Kim K B et al.. Inhibition of mutated, activated BRAF in metastatic melanoma.  N Engl J Med. 2010;  363 (9) 809-819
  • 154 Ferté C, André F, Soria J C. Molecular circuits of solid tumors: prognostic and predictive tools for bedside use.  Nat Rev Clin Oncol. 2010;  7 (7) 367-380
  • 155 Thomas M B. Biological characteristics of cancers in the gallbladder and biliary tract and targeted therapy.  Crit Rev Oncol Hematol. 2007;  61 (1) 44-51
  • 156 Eckel F, Schmid R M. Chemotherapy in advanced biliary tract carcinoma: a pooled analysis of clinical trials.  Br J Cancer. 2007;  96 (6) 896-902
  • 157 Valle J, Wasan H, Palmer D H ABC-02 Trial Investigators et al. Cisplatin plus gemcitabine versus gemcitabine for biliary tract cancer.  N Engl J Med. 2010;  362 (14) 1273-1281
  • 158 Zhu A X, Meyerhardt J A, Blaszkowsky L S et al.. Efficacy and safety of gemcitabine, oxaliplatin, and bevacizumab in advanced biliary-tract cancers and correlation of changes in 18-fluorodeoxyglucose PET with clinical outcome: a phase 2 study.  Lancet Oncol. 2010;  11 (1) 48-54
  • 159 Lubner S J, Mahoney M R, Kolesar J L et al.. Report of a multicenter phase II trial testing a combination of biweekly bevacizumab and daily erlotinib in patients with unresectable biliary cancer: a phase II Consortium study.  J Clin Oncol. 2010;  28 (21) 3491-3497
  • 160 Bengala C, Bertolini F, Malavasi N et al.. Sorafenib in patients with advanced biliary tract carcinoma: a phase II trial.  Br J Cancer. 2010;  102 (1) 68-72
  • 161 Yoshikawa D, Ojima H, Kokubu A et al.. Vandetanib (ZD6474), an inhibitor of VEGFR and EGFR signalling, as a novel molecular-targeted therapy against cholangiocarcinoma.  Br J Cancer. 2009;  100 (8) 1257-1266
  • 162 Malka D, Trarbach T, Fartoux L et al.. A multicenter, randomized phase II trial of gemcitabine and oxaliplatin (GEMOX) alone or in combination with biweekly cetuximab in the first-line treatment of advanced biliary cancer: Interim analysis of the BINGO trial.  J Clin Oncol. 2009;  27 (15s) 4520

Jessica Zucman-RossiM.D. Ph.D. 

Inserm U674, 27 rue Juliette Dodu

75010 Paris, France

Email: zucman@cephb.fr

    >