Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Ambient particle source apportionment and daily hospital admissions among children and elderly in Copenhagen

Abstract

An association between particulate air pollution and morbidity and mortality is well established. However, little is known about which sources of particulate matter contribute most to the adverse health effects. Identification of responsible sources would merit more efficient control. For a 6-year period (01 January 1999 to 31 December 2004), we examined associations between urban background PM10 in the presence of gaseous pollutants (CO, NO2) and hospital admissions due to cardiovascular and respiratory disease in the elderly (age≥65), and asthma in children (age 5–18) in Copenhagen, Denmark. We further studied associations between fractions of PM10 assigned to six sources (biomass, secondary, oil, crustal, sea salt, and vehicle) and admissions during a 1½ -year campaign. We used Poisson generalized additive time-series model adjusted for season, day of the week, public holidays, influenza epidemics, grass pollen, school holidays, and meteorology, with up to 5 days lagged air pollution exposure. We found positive associations between PM10 and the three health outcomes, with strongest associations for asthma. The PM10 effect remained robust in the presence of CO and NO2. We found different PM10 sources to be variably associated with different outcomes: crustal and secondary sources showed strongest associations with cardiovascular, biomass with respiratory, and vehicle with asthma admissions. These novel results may merit future research of potential mechanism, whereas at present, no single PM10 source can be attributed to all morbidity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  • A Le Tertre A., Medina S., Samoli E., Forsberg B., Michelozzi P., Boumghar A., et al. Short-term effects of particulate air pollution on cardiovascular diseases in eight European cities. J Epidemiol Community Health 2002: 56 (10): 773–779.

    Article  Google Scholar 

  • Akaike H. A new look at the statistical model identification. IEEE Trans Auto Control 1974: 19 (6): 716–723.

    Article  Google Scholar 

  • Anderson H.R., Atkinson R.W., Peacock J.L., Sweeting M.J., and Marston L. Ambient particulate matter and health effects: publication bias in studies of short-term associations. Epidemiology 2005: 16 (2): 155–163.

    Article  Google Scholar 

  • Atkinson R.W., Anderson H.R., Sunyer J., Ayres J., Baccini M., Vonk J.M., et al. Acute effects of particulate air pollution on respiratory admissions: results from APHEA 2 project. Air pollution and health: a European approach. Am J Respir Crit Care Med 2001: 164: 1860–1866.

    Article  CAS  Google Scholar 

  • Boman B.C., Forsberg A.B., and Jarvholm B.G. Adverse health effects from ambient air pollution in relation to residential wood combustion in modern society. Scand J Work Environ Health 2003: 29 (4): 251–260.

    Article  CAS  Google Scholar 

  • Brunekreef B., and Forsberg B. Epidemiological evidence of effects of coarse airborne particles on health. Eur Respir J 2005: 26 (2): 309–318.

    Article  CAS  Google Scholar 

  • Brunekreef B., and Holgate S.T. Air pollution and health. Lancet 2002: 360 (9341): 1233–1242.

    Article  CAS  Google Scholar 

  • Cooper J.A., et al. The effective variance weighting for least squares calculations applied to the mass balance receptor model. Atmos Environ 1984: 18: 1347–1355.

    Article  Google Scholar 

  • Dominici F., Peng R.D., Bell M.L., Pham L., McDermott A., Zeger S.L., et al. Fine particulate air pollution and hospital admission for cardiovascular and respiratory diseases. JAMA 2006: 295 (10): 1127–1134.

    Article  CAS  Google Scholar 

  • Englert N. Fine particles and human health-a review of epidemiological studies. Toxicol Lett 2004: 149 (1–3): 235–242.

    Article  CAS  Google Scholar 

  • Gauderman W.J., Avol E., Lurmann F., Kuenzli N., Gilliland F., Peters J., et al. Childhood asthma and exposure to traffic and nitrogen dioxide. Epidemiology 2005: 16 (6): 737–743.

    Article  Google Scholar 

  • Guo Y.L., Lin Y.C., Sung F.C., Huang S.L., Ko Y.C., Lai J.S., et al. Climate, traffic-related air pollutants, and asthma prevalence in middle-school children in Taiwan. Environ Health Perspect 1999: 107 (12): 1001–1006.

    Article  CAS  Google Scholar 

  • Hastie T., and Tibshirani R. Generalized Additive Models. Chapman and Hall, London, 1990.

    Google Scholar 

  • HEI. Revised Analyses of Time-Series Studies of Air Pollution and Health. Health Effects Institute, Boston, 2003.

  • Hopke P.K., Ito K., Mar T., Christensen W.F., Eatough D.J., Henry R.C., et al. PM source apportionment and health effects: 1. Intercomparison of source apportionment results. J Expo Sci Environ Epidemiol 2006: 16 (3): 275–286.

    Article  CAS  Google Scholar 

  • Ito K., Christensen W.F., Eatough D.J., Henry R.C., Kim E., Laden F., et al. PM source apportionment and health effects: 2. An investigation of intermethod variability in associations between source-apportioned fine particle mass and daily mortality in Washington, DC. J Expo Sci Environ Epidemiol 2006: 16 (4): 300–310.

    Article  CAS  Google Scholar 

  • Janssen N.A., Schwartz J., Zanobetti A., and Suh H.H. Air conditioning and source-specific particles as modifiers of the effect of PM(10) on hospital admissions for heart and lung disease. Environ Health Perspect 2002: 110 (1): 43–49.

    Article  CAS  Google Scholar 

  • Katsouyanni K., Touloumi G., Samoli E., Gryparis A., Le Tertre A., Monopolis Y., et al. Confounding and effect modification in the short-term effects of ambient particles on total mortality: results from 29 European cities within the APHEA2 project. Epidemiology 2001: 12 (5): 521–531.

    Article  CAS  Google Scholar 

  • Kunzli N., Kaiser R., Medina S., Studnicka M., Chanel O., Filliger P., et al. Public-health impact of outdoor and traffic-related air pollution: a European assessment. Lancet 2000: 356 (9232): 795–801.

    Article  CAS  Google Scholar 

  • Laden F., Neas L.M., Dockery D.W., and Schwartz J. Association of fine particulate matter from different sources with daily mortality in six US cities. Environ Health Perspect 2000: 108 (10): 941–947.

    Article  CAS  Google Scholar 

  • Lanki T., de Hartog J., Heinrich J., Hoek G., Janssen N.A.H., Peters A., et al. Can we identify sources of fine particles responsible for exercise-induced ischemia on days with elevated air pollution? The ULTRA study. Environ Health Perspect 2006: 114 (5): 655–660.

    Article  CAS  Google Scholar 

  • Lippmann M., Hwang J.S., Maciejczyk P., and Chen L.C. PM source apportionment for short-term caridac function changes in ApoE/− mice. Environ Health Perspect 2005: 113 (11): 1575–1579.

    Article  Google Scholar 

  • Mar T.F., Ito K., Koenig J.Q., Larson T.V., Eatough D.J., Henry R.C., et al. PM source apportionment and health effects. 3. Investigation of inter-method variations in associations between estimated source contributions of PM(2.5) and daily mortality in Phoenix, AZ. J Expo Anal Environ Epidemiol 2006: 16 (4): 311–320.

    Article  CAS  Google Scholar 

  • Mar T.F., Norris G.A., Koenig J.Q., and Larson T.V. Associations between air pollution and mortality in Phoenix, 1995–1997. Environ Health Perspect 2000: 108 (4): 347–353.

    Article  CAS  Google Scholar 

  • McConnell R., Berhane K., Gilliland F., London S.J., Vora H., Avol E., et al. Air pollution and bronchitic symptoms in Southern California children with asthma. Environ Health Perspect 1999: 107 (9): 757–760.

    Article  CAS  Google Scholar 

  • McConnell R., Berhane K., Yao L., Jerrett M., Lurmann F., Gillilan F., et al. Traffic, susceptibility, and childhood asthma. Environ Health Perspect 2006: 114 (5): 766–772.

    Article  CAS  Google Scholar 

  • Metzger K.B., Tolbert P.E., Klein M., Peel J.L., Flanders W.D., Todd K., et al. Ambient air pollution and cardiovascular emergency department visits. Epidemiology 2004: 15 (1): 46–56.

    Article  Google Scholar 

  • Orzoco-Levi M., Garcia-Aymerich J., Villar J., Ramirez-Sarmiento A., Anto J.M., and Gea J. Wood smoke exposure and risk of obstructive pulmonary disease. Eur Respir J 2006: 27 (3): 446–447.

    Article  Google Scholar 

  • Ozkaynak H., and Thurston G.D. Associations between 1980 US mortality rates and alternative measures of airborne particle concentration. Risk Anal 1987: 7 (4): 449–461.

    Article  CAS  Google Scholar 

  • Paatero P., and Tapper U. Positive Matrix Factorization: a non-negative factor model with optimal utilization of error estimates of data values. Environmentrics 1994: 5: 111–126.

    Article  Google Scholar 

  • Penttinen P., Vallius M., Tiittanen P., Ruuskanen J., and Pekkanen J. Source-Specific fine particles in urban air and respiratory function among adult asthmatics. Inhal Toxicol 2006: 18: 191–198.

    Article  CAS  Google Scholar 

  • R Development Core Team. R: A language and environment for statistical computing, Version 2.3.0, R Foundation for Statistical Computing, Vienna: Austria, 2006.

  • Samet J.M., Zeger S.L., Dominici F., Curriero F., Coursac I., Dockery D.W., et al. The National Morbidity, Mortality, and Air Pollution Study. Part II: morbidity and mortality from air pollution in the United States. Health Effects Institute 2000: 94: 5–70.

    CAS  Google Scholar 

  • Schwartz J. Air pollution and children's health. Pediatrics 2004: 113 (4 Suppl): 1037–1043.

    Google Scholar 

  • Schwartz J. Air pollution and hospital admissions for the elderly in Birmingham, Alabama. Am J Epidemiol 1994: 139 (6): 589–598.

    Article  CAS  Google Scholar 

  • Schwartz J. The distributed lag between air pollution and daily deaths. Epidemiology 2000: 11 (3): 320–326.

    Article  CAS  Google Scholar 

  • Spix C., Anderson H.R., Schwartz J., Vigotti M.A., LeTertre A., Vonk J.M., et al. Short-term effects of air pollution on hospital admissions of respiratory diseases in Europe: a quantitative summary of APHEA study results. Air pollution and health: a European approach. Arch Environ Health 1998: 53 (1): 54–64.

    Article  CAS  Google Scholar 

  • Studnicka M., Hackl E., Pischinger J., Fangmeyer C., Haschke N., Kuhr J., et al. Traffic-related NO2 and the prevalence of asthma and respiratory symptoms in seven year olds. Eur Respir J 1997: 10 (10): 2275–2278.

    Article  CAS  Google Scholar 

  • Sverdrup H.U., Johnson M.V., and Flemming R.H. The Oceans. Prentice-Hall, New York, 1942.

    Google Scholar 

  • Wahlin P., Berkowicz R., and Palmgren F. Characterisation of traffic-generated particulate matter in Copenhagen. Atmos Environ 2006: 40: 2151–2159.

    Article  CAS  Google Scholar 

  • Wahlin P. COPREM – A multivariate receptor model with a physical approach. Atmos Environ 2003: 37 (35): 4861–4867.

    Article  CAS  Google Scholar 

  • WHO. Effects of Air Pollution on Children's Health and Development; a Review of Evidence. European Centre for Environment and Health, World Health Organization, Bonn, Germany, 2005.

  • WHO. Meta-Analysis of Time-Series Studies and Panel Studies of Particulate Matter (PM) and Ozone (O3). World Health Organization, Regional Office for Europe, Copenhagen, Denmark, 2004.

Download references

Acknowledgements

This study was supported by the Danish Research Council grant and by the Danish Research Council grant number 2052–03–16, AIRPOLIFE (Air Pollution in a Life Time Health Perspective).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zorana J Andersen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Andersen, Z., Wahlin, P., Raaschou-Nielsen, O. et al. Ambient particle source apportionment and daily hospital admissions among children and elderly in Copenhagen. J Expo Sci Environ Epidemiol 17, 625–636 (2007). https://doi.org/10.1038/sj.jes.7500546

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.jes.7500546

Keywords

This article is cited by

Search

Quick links