Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Comparison between different traffic-related particle indicators: Elemental carbon (EC), PM2.5 mass, and absorbance

Abstract

Here we compare PM2.5 (particles with aerodynamic diameter less than 2.5 μm) mass and filter absorbance measurements with elemental carbon (EC) concentrations measured in parallel at the same site as well as collocated PM2.5 and PM10 (particles with aerodynamic diameter less than 10 μm) mass and absorbance measurements. The data were collected within the Traffic-Related Air Pollution on Childhood Asthma (TRAPCA) study in Germany, The Netherlands and Sweden. The study was designed to assess the health impact of spatial contrasts in long-term average concentrations. The measurement sites were distributed between background and traffic locations. Annual EC and PM2.5 absorbance measurements were at traffic sites on average 43–84% and 26–76% higher, respectively, compared to urban background sites. The contrast for PM2.5 mass measurements was lower (8–35%). The smaller contrast observed for PM2.5 mass in comparison with PM2.5 absorbance and EC documents that PM2.5 mass underestimates exposure contrasts related to motorized traffic emissions. The correlation between PM10 and PM2.5 was high, documenting that most of the spatial variation of PM10 was because of PM2.5. The measurement of PM2.5 absorbance was highly correlated with EC measurements and suggests that absorbance can be used as a simple, inexpensive and non-destructive method to estimate motorized traffic-related particulate air pollution. The EC/absorbance relation differed between countries and site type (background/traffic), supporting the need for site-specific calibrations of the simple absorbance method. While the ratio between PM2.5 and PM10 mass ranged from 0.54 to 0.68, the ratio of PM2.5 absorbance and PM10 absorbance was 0.96–0.97, indicating that PM2.5 absorbance captures nearly all of the particle absorbance.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  • Bayram H., Devalia J.L., Sapsford R.J., Ohtoshi T., Miyabara Y., Sagai M., and, Davies R.J. The effect of diesel exhaust particles on cell function and release of inflammatory mediators from human bronchial epithelial cells in vitro. J Respir Cell Mol Biol 1998: 18: 441–448.

    Article  CAS  Google Scholar 

  • Brunekreef B., Janssen N.A.H., Hartog de J., Harssema H., Knape M., and, Vliet van P. Air pollution from truck traffic and lung function in children living near motorways. Epidemiology 1997: 8: 298–303.

    Article  CAS  Google Scholar 

  • Chow J. Measurement methods to determine compliance with ambient air quality standards for suspended particles. J Air Waste Manage Assoc 1995: 45: 320–382.

    Article  CAS  Google Scholar 

  • Ciccone G., Forastiere F., Agabiti N., Biggeri A., Bisanti L., Chelline E., Corbo G., Dell'Orco V., and, Dalmasso P. Road traffic and adverse respiratory effects in children. OccupEnviron Med 1998: 55: 771–778.

    CAS  Google Scholar 

  • Countant B., and, Stetzer S. Evaluation of PM2.5 speciation sampler performance and related sample collection and stability issues: final report. US Environmental Protection Agency, Research Triangle Park, NC, 2001 Office of Air Quality Planning and Standards: (Report No. EPA-454/R-01-008) (http://www.epa.gov/ttn/amtic/pmspec.html).

  • Cyrys J., Heinrich J., Brauer M., and, Wichmann H.E. Spatial variability of acidic aerosols, sulfate and PM10 in Erfurt, Eastern Germany. J Expos Anal Environ Epidemiol 1998: 8(4): 447–464.

    CAS  Google Scholar 

  • Delumyea R.G., Chu L.C., and, Macias E.S. Determination of elemental carbon component of soot in ambient samples. Atmos Environ 1980: 1: 647–652.

    Article  Google Scholar 

  • Diaz-Sanchez D. The role of diesel exhaust particles and their associated polyaromatic hydrocarbons in the induction of allergic airway disease. Allergy 1997: 52 (38 Suppl): 52–56.

    Article  CAS  Google Scholar 

  • Duhme H., Weiland S.K., Keil U., Kraemer B., Schmid M., Stender M., and, Chambless L. The association between self-reported symptoms of asthma and allergic rhinitis and self-reported traffic density on street of residence in Adolescents. Epidemiology 1996: 7 (6): 578–582.

    Article  CAS  Google Scholar 

  • English P., Neutra R., Scalf R., Sullivan M., Waller L., and, Zhu L. Examining associations between childhood asthma and traffic flow using a geographic information system. Environ Health Perspect 1999: 107: 761–767.

    Article  CAS  Google Scholar 

  • Fischer A., Gehrig R., and, Hofer P. 1997. Russmesungen in der Außenluft, Methodik und Resultate. Schriftenreihe Umwelt-Materialien Nr. 80 Luft. Bundesamt für Umwelt, Wald und Landschaft (BUWAL), Bern.

  • Fischer P.H., Hoek G., van Reeuwiijk H., Briggs D.J., Lebret E., van Wijnen J.H., Kingham S., and, Elliott P.E. Traffic-related differences in outdoor and indoor concentrations of particles and volatile organic compounds in Amsterdam. Atmos Environ 2000: 34: 3713–3722.

    Article  CAS  Google Scholar 

  • Gray H.A., and, Cass G.R. Source contributions to atmospheric fine carbon particle concentrations. Atmos Environ 1998: 32 (22): 3805–3825.

    Article  CAS  Google Scholar 

  • Hamilton R., and, Mansfield T. Atmos Environ 1991: 25A: 715–723.

  • Hies T., Treffeisen R., Sebald L., and, Reimer E. Spectral analysis of air pollutants. Part 1: elemental carbon time series. Atmos Environ 2000: 34: 3495–3502.

    Article  CAS  Google Scholar 

  • Hoek G., Forsberg B., Borowska M., Hlawiczka S., Vaskövi E., Welinder H., Braniss M., Benes I., Kotesevec F., Hagen L.O., Cyrys J., Jantunen M.J., Roemer W., Brunekreef B. Wintertime PM10 and Black Smoke concentrations across Europe: results from the PEACE study. Atmos Environ 1997a: 31: 3609–3622.

    Article  CAS  Google Scholar 

  • Hoek G., Meliefste K., Cyrys J., Lewné M., Bellander T., Brauer B., Fischer P., Gehring G., Heinrich J., Vliet vad P., and, Brunekreef B. Spatial variability of fine particle concentrations in three European countries. Atmos Environ 2002: 36: 4077–4088.

    Article  CAS  Google Scholar 

  • Hoek G., Welinder H., Vaskovi E., Ciacchini G., Manalis N., Royset O., Reponen A., Cyrys J., and, Brunekreef B. Interlaboratory comparison of PM10 and Black Smoke measurements in the PEACE study. Atmos Environ 1997b: 31: 3341–3349.

    Article  CAS  Google Scholar 

  • Horvarth H. Atmospheric light absorption-a review. Atmos Environ 1993: 27A: 293–317.

    Article  Google Scholar 

  • ISO. Ambient air-determination of a black smoke index. International Organization for Standarization. International Standard 9835-1993 (E), 1993.

  • Janssen N.A.H., van Mansom D.F.M., van Jagt K., Harssema H., and, Hoek G. Mass concentration and elemental composition of airborne particulate matter at street and background locations. Atmos Environ 1997: 31: 1185–1193.

    Article  CAS  Google Scholar 

  • Janssen N.A.H., van Vliet P., van Aarts F., Harssema H., and, Brunekreef B. Assessment of exposure to traffic-related air pollution of children attending schools near motorways. Atmos Environ 2001: 35: 3875–3884.

    Article  CAS  Google Scholar 

  • Keeber G. The source of aerosols elemental carbon at Allerghery mountain. Atmos Environ 1990: 24A: 2795–2805.

    Google Scholar 

  • Kinney P.L., Aggarwal M., Northridge M.A., Janssen N.A.H., and, Shepard P. Personal exposure to PM2.5 and diesel exhaust particles on Harlem sidewalks. Environ Health Perspect 2000: 108: 213–218.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Krämer U., Koch T., Ranft U., Ring J., and, Behrendt H. Traffic-related air pollution is associated with atopy in children living in urban areas. Epidemiology 2000: 11: 64–70.

    Article  Google Scholar 

  • Laden F., Neas L.M., Dockery D.W., and, Schwartz J. Association of fine particulate matter from different sources with daily mortality in six U.S. cities. Environ Health Perspect 2000: 108 (10): 941–947.

    Article  CAS  Google Scholar 

  • Marple V.A., Rubow K.L., Turner W., Spengler J.D. Low flow rate sharp cut impactors for indoor air sampling: design and calibration. J Air Pollut Control Assoc 1987: 37: 1303–1307.

    CAS  Google Scholar 

  • Monn Ch., Carabias V., Junker R., Waeber R., Karrer M., and, Wanner H.U. Small-scale spatial variability of particulate matter <10 μm (PM10) and nitrogen dioxide. Atmos Environ 1997: 31: 2243–2247.

    Article  CAS  Google Scholar 

  • Nakai S., Nitta H. and Maeda K. Respiratory health associated with exposure to automobile exhaust. II. Personal NO2 Exposure Levels According to Distance from the Roadside. J Expos Anal Environ Epidemiol 1995: 5 (2): 125–136.

    CAS  Google Scholar 

  • Nielsen T. Traffic contribution of polycyclic aromatic hydrocarbons in the center of a large city. Atmos Environ 1996: 20: 3481–3490

    Article  Google Scholar 

  • Nyberg F., Gustavsson P., Järup L., Bellander T., Berglind N., Jakobsson R., and, Pershagen G. Urban air pollution and lung cancer in Stockholm. Epidemiology 2000: 11 (5): 487–495.

    Article  CAS  Google Scholar 

  • OECD. Method of Measuring Air Pollution. Organisation for Economic Co-operation and Development, Paris, 1964.

  • Oosterlee A., Drijver M., Lebret E., and, Brunekreef B. Chronic respiratory symptoms in children and adults living along streets with high traffic density. Occup Environ Med 1996: 53: 241–247.

    Article  CAS  Google Scholar 

  • Penttinen P., Alm S., Ruuskanen J., and, Pekkanen J. Measuring reflectance of TSP-filters for retrospective health studies. Atmos Environ 2000: 34: 2581–2586.

    Article  CAS  Google Scholar 

  • Schmid H., Laskus L., Abraham H.J., Baltensperger U., Levenchy V., Bizjak M., Burba P., Cachier H., Crow D., Chow J., Gnauk V., Even V., ten Brink H.M., Giesen K.P., Hitzenberger R., Hueglin C., Maenhaut W., Pio C., Carvalho V., Putaud J.P., Toom-Sauntry D. and, Puxbaum H. Results of the “carbon conference” international carbon round robin test stage I. Atmos Environ 2001: 35: 2111–2121.

    Article  CAS  Google Scholar 

  • Schwartz J., Dockery D.W., Neas L.M. Is daily mortality associated specifically with fine particles? J. Air Waste Manage Assoc 1996: 46: 927–939.

    Article  CAS  Google Scholar 

  • Tolocka M.P., Solomon P.A., Mitchell W., Norris G.A., Gemmill D.B., Wiener R.W., Vanderpool R.W., Homolya J.B., and, Rice J. East versus West in the US: chemical characteristics of PM2.5 during Winter of 1999. Aerosol Sci Technol 2001: 34: 88–96.

    Article  CAS  Google Scholar 

  • Ulrich E. and, Israel G.W. Diesel soot measurement under traffic conditions. J Aerosol Sci 1992: 1 (Suppl. 23): S925–928.

    Article  Google Scholar 

  • VDI. Verein Deutscher Ingenieure, 2465, Part 1: Measurements of Soot (Immission) — Chemical Analysis of Elemental Carbon by Extraction and Thermal Desorption of Organic Carbon. Bueth, Berlin, 1996.

  • Vliet van P., Knape M., Hartog de J., Janssen N., Harssema H., and, Brunekreef B. Motor vehicle exhaust and chronic respiratory symptoms in children living near motorways. Environ Res 1997: 74: 122–132.

    Article  Google Scholar 

  • Weiland S.K., Mundt K.A., Rueckmann A., and, Keil U. Self-reported wheezing and allergic rhinitis in children and traffic density on street of residence. Ann Epidemiol 1994: 4: 243–247.

    Article  CAS  Google Scholar 

  • Wjst M., Reitmeir P., Dold S., Wulff A., Nicola T., von Loeffelholz-Colberg E., von Mutius E. Road traffic and adverse effects on respiratory health in children. Br Med J 1993: 307: 596–600.

    Article  CAS  Google Scholar 

  • Wolff P., Korsog P., Stroup D., Ruthkorky M., and, Morrissey M. The influence of local and regional sources on the concentrations of inhalable particulate matter in South-eastern Michigan. Atmos Environ 1985: 19: 305–313.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Josef Cyrys.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cyrys, J., Heinrich, J., Hoek, G. et al. Comparison between different traffic-related particle indicators: Elemental carbon (EC), PM2.5 mass, and absorbance. J Expo Sci Environ Epidemiol 13, 134–143 (2003). https://doi.org/10.1038/sj.jea.7500262

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.jea.7500262

Keywords

Search

Quick links