Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Cholangiocarcinoma

Abstract

Cholangiocarcinomas are rare malignant tumors composed of cells that resemble those of the biliary tract. On the basis of their anatomic location, cholangiocarcinomas can be classified as intrahepatic, extrahepatic and hilar tumors. For reasons that are not clear, the incidence of cholangiocarcinoma is increasing globally. Established risk factors, including conditions associated with chronic biliary tract inflammation, account for a small proportion of cases. Additional risk factors such as cirrhosis, infection with hepatitis B virus and hepatitis C virus are now becoming recognized. The diagnosis of cholangiocarcinoma requires the integration of clinical information, imaging studies of the hepatic parenchyma and biliary tract, tumor markers, and histology. In terms of the treatment options for cholangiocarcinoma, surgery can be curative, although few patients are candidates for surgery. Palliative biliary decompression can provide symptomatic relief. Advances in MRI and positron-emission tomography scanning, identification of new tumor markers, improved utility of biliary cytology, and the use of photodynamic therapy for adjunct treatment are all expected to enhance the diagnosis, evaluation and management of cholangiocarcinoma.

Key Points

  • Optimal management requires accurate diagnosis and staging, and assessment of candidacy for surgical intervention or palliative therapy

  • Diagnosis and staging requires consideration of the clinical scenario, imaging studies, tumor markers and histologic evaluation

  • Treatment is determined by the local extent of disease, vascular involvement, the presence or absence of metastases, comorbidities and available expertise

  • Complete resection or transplantation remain the only potentially curative therapy

  • Palliation can improve the quality of life and might also improve survival in patients with unresectable disease

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Classification of cholangiocarcinoma.

Similar content being viewed by others

References

  1. Khan SA et al. (2002) Guidelines for the diagnosis and treatment of cholangiocarcinoma: consensus document. Gut 51 (Suppl 6): S1–S9

    Google Scholar 

  2. Ishak K.G et al. 1999 Tumors of the liver and intrahepatic bile ducts. In Atlas of Tumor Pathology, 3rd Series [Fascicle 31]. Washington, DC: Armed Forces Institute of Pathology

    Google Scholar 

  3. Liver Cancer Study Group of Japan (2000) The General Rules for the Clinical and Pathological Study of Primary Liver Cancer. Tokyo: Kanehara

  4. Yamasaki S (2003) Intrahepatic cholangiocarcinoma: macroscopic type and stage classification. J Hepatobiliary Pancreat Surg 10: 288–291

    PubMed  Google Scholar 

  5. Lim JH and Park CK (2004) Pathology of cholangiocarcinoma. Abdom Imaging 29: 540–547

    CAS  PubMed  Google Scholar 

  6. Weinbren K and Mutum SS (1983) Pathological aspects of cholangiocarcinoma. J Pathol 139: 217–238

    CAS  PubMed  Google Scholar 

  7. Shaib Y and El-Serag HB (2004) The epidemiology of cholangiocarcinoma. Semin Liver Dis 24: 115–125

    PubMed  Google Scholar 

  8. Patel T (2001) Increasing incidence and mortality of primary intrahepatic cholangiocarcinoma in the United States. Hepatology 33: 1353–1357

    CAS  PubMed  Google Scholar 

  9. Patel T (2002) Worldwide trends in mortality from biliary tract malignancies. BMC Cancer 2: 10

    PubMed  PubMed Central  Google Scholar 

  10. Taylor-Robinson SD et al. (2001) Increase in mortality rates from intrahepatic cholangiocarcinoma in England and Wales 1968–1998. Gut 48: 816–820

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Khan SA et al. (2002) Changing international trends in mortality rates for liver, biliary and pancreatic tumours. J Hepatol 37: 806–813

    PubMed  Google Scholar 

  12. Lazaridis KN and Gores GJ (2005) Cholangiocarcinoma. Gastroenterology 128: 1655–1667

    PubMed  Google Scholar 

  13. Farrant JM et al. (1991) Natural history and prognostic variables in primary sclerosing cholangitis. Gastroenterology 100: 1710–1717

    CAS  PubMed  Google Scholar 

  14. Broome U et al. (1996) Natural history and prognostic factors in 305 Swedish patients with primary sclerosing cholangitis. Gut 38: 610–615

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Bergquist A et al. (1998) Risk factors and clinical presentation of hepatobiliary carcinoma in patients with primary sclerosing cholangitis: a case-control study. Hepatology 27: 311–316

    CAS  PubMed  Google Scholar 

  16. Chalasani N et al. (2000) Cholangiocarcinoma in patients with primary sclerosing cholangitis: a multicenter case-control study. Hepatology 31: 7–11

    CAS  PubMed  Google Scholar 

  17. Watanapa P and Watanapa WB (2002) Liver fluke-associated cholangiocarcinoma. Br J Surg 89: 962–970

    CAS  PubMed  Google Scholar 

  18. Kubo S et al. (1995) Hepatolithiasis associated with cholangiocarcinoma. World J Surg 19: 637–641

    CAS  PubMed  Google Scholar 

  19. Shaib YH et al. (2005) Risk factors of intrahepatic cholangiocarcinoma in the United States: a case-control study. Gastroenterology 128: 620–626

    PubMed  Google Scholar 

  20. Kobayashi M et al. (2000) Incidence of primary cholangiocellular carcinoma of the liver in Japanese patients with hepatitis C virus-related cirrhosis. Cancer 88: 2471–2477

    CAS  PubMed  Google Scholar 

  21. Chapman RW (1999) Risk factors for biliary tract carcinogenesis. Ann Oncol 10 (Suppl 4): S308–S311

    Google Scholar 

  22. Sharp GB (2002) The relationship between internally deposited alpha-particle radiation and subsite-specific liver cancer and liver cirrhosis: an analysis of published data. J Radiat Res (Tokyo) 43: 371–380

    Google Scholar 

  23. Tocchi A et al. (2001) Late development of bile duct cancer in patients who had biliary-enteric drainage for benign disease: a follow-up study of more than 1,000 patients. Ann Surg 234: 210–214

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Walker NJ et al. (2005) Dose-additive carcinogenicity of a defined mixture of “dioxin-like compounds”. Environ Health Perspect 113: 43–48

    CAS  PubMed  Google Scholar 

  25. Bond GG et al. (1990) Liver and biliary tract cancer among chemical workers. Am J Ind Med 18: 19–24

    CAS  PubMed  Google Scholar 

  26. Boberg KM et al. (2001) The HLA-DR3,DQ2 heterozygous genotype is associated with an accelerated progression of primary sclerosing cholangitis. Scand J Gastroenterol 36: 886–890

    CAS  PubMed  Google Scholar 

  27. Prawan A et al. (2005) Association between genetic polymorphisms of CYP1A2, arylamine N-acetyltransferase 1 and 2 and susceptibility to cholangiocarcinoma. Eur J Cancer Prev 14: 245–250

    CAS  PubMed  Google Scholar 

  28. Bloom CM et al. (1999) Role of US in the detection, characterization, and staging of cholangiocarcinoma. Radiographics 19: 1199–1218

    CAS  PubMed  Google Scholar 

  29. Zhang Y et al. (1999) Intrahepatic peripheral cholangiocarcinoma: comparison of dynamic CT and dynamic MRI. J Comput Assist Tomogr 23: 670–677

    CAS  PubMed  Google Scholar 

  30. Tillich M et al. (1998) Multiphasic helical CT in diagnosis and staging of hilar cholangiocarcinoma. AJR Am J Roentgenol 171: 651–658

    CAS  PubMed  Google Scholar 

  31. Cherqui D et al. (2000) Major liver resection for carcinoma in jaundiced patients without preoperative biliary drainage. Arch Surg 135: 302–308

    CAS  PubMed  Google Scholar 

  32. Hochwald SN et al. (1999) Association of preoperative biliary stenting with increased postoperative infectious complications in proximal cholangiocarcinoma. Arch Surg 134: 261–266

    CAS  PubMed  Google Scholar 

  33. Manfredi R et al. (2004) Magnetic resonance imaging of cholangiocarcinoma. Semin Liver Dis 24: 155–164

    PubMed  Google Scholar 

  34. Vilgrain V et al. (1997) Intrahepatic cholangiocarcinoma: MRI and pathologic correlation in 14 patients. J Comput Assist Tomogr 21: 59–65

    CAS  PubMed  Google Scholar 

  35. Kim YJ et al. (2003) Usefulness of 18F-FDG PET in intrahepatic cholangiocarcinoma. Eur J Nucl Med Mol Imaging 30: 1467–1472

    PubMed  Google Scholar 

  36. Anderson CD et al. (2004) Fluorodeoxyglucose PET imaging in the evaluation of gallbladder carcinoma and cholangiocarcinoma. J Gastrointest Surg 8: 90–97

    PubMed  Google Scholar 

  37. Fritscher-Ravens A et al. (2004) EUS-guided fine-needle aspiration of suspected hilar cholangiocarcinoma in potentially operable patients with negative brush cytology. Am J Gastroenterol 99: 45–51

    CAS  PubMed  Google Scholar 

  38. Farrell RJ et al. (2002) Intraductal US is a useful adjunct to ERCP for distinguishing malignant from benign biliary strictures. Gastrointest Endosc 56: 681–687

    PubMed  Google Scholar 

  39. Clayton RA et al. (2003) Incidence of benign pathology in patients undergoing hepatic resection for suspected malignancy. Surgeon 1: 32–38

    CAS  PubMed  Google Scholar 

  40. Mansfield JC et al. (1997) A prospective evaluation of cytology from biliary strictures. Gut 40: 671–677

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Sugiyama M et al. (1996) Endoscopic transpapillary bile duct biopsy without sphincterotomy for diagnosing biliary strictures: a prospective comparative study with bile and brush cytology. Am J Gastroenterol 91: 465–467

    CAS  PubMed  Google Scholar 

  42. Kipp BR et al. (2004) A comparison of routine cytology and fluorescence in situ hybridization for the detection of malignant bile duct strictures. Am J Gastroenterol 99: 1675–1681

    PubMed  Google Scholar 

  43. Nakeeb A et al. (1996) Biliary carcinoembryonic antigen levels are a marker for cholangiocarcinoma. Am J Surg 171: 147–152

    CAS  PubMed  Google Scholar 

  44. Bjornsson E et al. (1999) CA 19-9 and CEA are unreliable markers for cholangiocarcinoma in patients with primary sclerosing cholangitis. Liver 19: 501–508

    CAS  PubMed  Google Scholar 

  45. Ramage JK et al. (1995) Serum tumor markers for the diagnosis of cholangiocarcinoma in primary sclerosing cholangitis. Gastroenterology 108: 865–869

    CAS  PubMed  Google Scholar 

  46. Nichols JC et al. (1993) Diagnostic role of serum CA 19-9 for cholangiocarcinoma in patients with primary sclerosing cholangitis. Mayo Clin Proc 68: 874–879

    CAS  PubMed  Google Scholar 

  47. Patel AH et al. (2000) The utility of CA 19-9 in the diagnoses of cholangiocarcinoma in patients without primary sclerosing cholangitis. Am J Gastroenterol 95: 204–207

    CAS  PubMed  Google Scholar 

  48. Nehls O et al. (2004) Serum and bile markers for cholangiocarcinoma. Semin Liver Dis 24: 139–154

    CAS  PubMed  Google Scholar 

  49. Koopmann J et al. (2004) Mac-2-binding protein is a diagnostic marker for biliary tract carcinoma. Cancer 101: 1609–1615

    CAS  PubMed  Google Scholar 

  50. Lieser MJ et al. (1998) Surgical management of intrahepatic cholangiocarcinoma: a 31-year experience. J Hepatobiliary Pancreat Surg 5: 41–47

    CAS  PubMed  Google Scholar 

  51. Hemming AW et al. (2003) Preoperative portal vein embolization for extended hepatectomy. Ann Surg 237: 686–691

    PubMed  PubMed Central  Google Scholar 

  52. Neuhaus P et al. (1999) Extended resections for hilar cholangiocarcinoma. Ann Surg 230: 808–818

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Yoshida T et al. (2002) Prognostic factors after pancreatoduodenectomy with extended lymphadenectomy for distal bile duct cancer. Arch Surg 137: 69–73

    PubMed  Google Scholar 

  54. Corvera CU et al. (2002) Role of laparoscopy in the evaluation of biliary tract cancer. Surg Oncol Clin N Am 11: 877–891

    PubMed  Google Scholar 

  55. Jarnagin WR and Shoup M (2004) Surgical management of cholangiocarcinoma. Semin Liver Dis 24: 189–199

    PubMed  Google Scholar 

  56. McMasters KM et al. (1997) Neoadjuvant chemoradiation for extrahepatic cholangiocarcinoma. Am J Surg 174: 605–608

    CAS  PubMed  Google Scholar 

  57. Wiedmann M et al. (2003) Neoadjuvant photodynamic therapy as a new approach to treating hilar cholangiocarcinoma: a phase II pilot study. Cancer 97: 2783–2790

    PubMed  Google Scholar 

  58. Meyer CG et al. (2000) Liver transplantation for cholangiocarcinoma: results in 207 patients. Transplantation 69: 1633–1637

    CAS  PubMed  Google Scholar 

  59. Iwatsuki S et al. (1998) Treatment of hilar cholangiocarcinoma (Klatskin tumors) with hepatic resection or transplantation. J Am Coll Surg 187: 358–364

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Rea DJ et al. (2005) Liver transplantation with neoadjuvant chemoradiation is more effective than resection for hilar cholangiocarcinoma. Ann Surg 242: 451–461

    PubMed  PubMed Central  Google Scholar 

  61. Pitt HA et al. (1995) Perihilar cholangiocarcinoma. Postoperative radiotherapy does not improve survival. Ann Surg 221: 788–797

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Nakeeb A et al. (2002) Improved survival in resected biliary malignancies. Surgery 132: 555–563

    PubMed  Google Scholar 

  63. Kelley ST et al. (2004) Cholangiocarcinoma: advocate an aggressive operative approach with adjuvant chemotherapy. Am Surg 70: 743–748

    CAS  PubMed  Google Scholar 

  64. Daines WP et al. (2004) Gallbladder and biliary tract carcinoma: a comprehensive update, Part 2. Oncology (Williston Park) 18: 1049–1059

    Google Scholar 

  65. Olnes MJ and Erlich R (2004) A review and update on cholangiocarcinoma. Oncology 66: 167–179

    PubMed  Google Scholar 

  66. Dougherty TJ et al. (1998) Photodynamic therapy. J Natl Cancer Inst 90: 889–905

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Berr F (2004) Photodynamic therapy for cholangiocarcinoma. Semin Liver Dis 24: 177–187

    PubMed  Google Scholar 

  68. Ortner MA (2004) Photodynamic therapy in cholangiocarcinomas. Best Pract Res Clin Gastroenterol 18: 147–154

    PubMed  Google Scholar 

  69. Ortner ME et al. (2003) Successful photodynamic therapy for nonresectable cholangiocarcinoma: a randomized prospective study. Gastroenterology 125: 1355–1363

    PubMed  Google Scholar 

  70. Bismuth H et al. (1992) Management strategies in resection for hilar cholangiocarcinoma. Ann Surg 215: 31–38

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tushar Patel.

Ethics declarations

Competing interests

The author declares no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Patel, T. Cholangiocarcinoma. Nat Rev Gastroenterol Hepatol 3, 33–42 (2006). https://doi.org/10.1038/ncpgasthep0389

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncpgasthep0389

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing